3 For recent representative chiral syntheses of (2)-a-cuparenone; (a)
A. I. Meyers and B. A. Lefker, J. Org. Chem., 1986, 51, 1541; (b)
M. M. Gharpure and A. S. Rao, Synth. Commun., 1989, 19, 1813; (c)
H. Nemoto, H. Ishibashi, M. Nagamochi and K. Fukumoto, J. Org.
Chem., 1992, 57, 1707; (d) J. L. Canet, A. Fadel and J. Salau¨n, J. Org.
Chem., 1992, 57, 3463, and references are cited therein. For
(+)-a-cuparenone, (e) T. Honda, N. Kimura and M. Tsubuki, Tetra-
hedron Asymmetry, 1993, 4, 21; (f) J. B. Schwarz and A. I. Meyers,
J. Org. Chem., 1995, 60, 6511; (g) K. Maruoka, M. Oishi and
H. Yamamoto, J. Am. Chem. Soc., 1996, 118, 2289.
4 For cyclopentene annulation via [1,5] C–H insertion of alkylidene
carbene; (a) J. Wolinsky, G. W. Clark and P. C. Thorstenson, J. Org.
Chem., 1976, 41, 745; (b) J. C. Gilbert, D. H. Giamalva and
U. Weerasooriya, J. Org. Chem., 1983, 48, 5251; (c) J. C. Gilbert,
D. H. Giamalva and M. E. Baze, J. Org. Chem., 1985, 50, 2557; (d)
M. Ochiai, M. Kunishima, Y. Nagao, K. Fuji, M. Shiro and E. Fujita,
J. Am. Chem. Soc., 1986, 108, 8281; (e) M. Ochiai, M. Kunishima,
S. Tani and Y. Nagao, J. Am. Chem. Soc., 1991, 113, 3135; (f) S. Ohira,
K. Okai and T. Moritani, J. Chem. Soc., Chem. Commun., 1992, 721; (g)
M. Ochiai, K. Uemura and Y. Masaki, J. Am. Chem. Soc., 1993, 115,
2528; (h) S. Ohira, T. Moritani, T. Ida and M. Yamato, J. Chem. Soc.,
Chem. Commun., 1993, 1299; (i) R. R. Tykwinski, P. J. Stang and
N. E. Persky, Tetrahedron Lett., 1994, 35, 23; (j) M. Kunishima,
K. Hioki, S. Tani and A. Kato, Tetrahedron Lett., 1994, 35, 7253; (k)
D. F. Taber and R. P. Meagley, Tetrahedron Lett., 1994, 35, 7909; (l)
S. Kim and C. M. Cho, Tetrahedron Lett., 1994, 35, 8405; (m)
D. F. Taber, A. Sahli, H. Yu and R. P. Meagley, J. Org. Chem., 1995,
60, 6571; (n) D. F. Taber, R. P. Meagley and D. J. Doren, J. Org. Chem.,
1996, 61, 5723.
convenient for further transformations. Thus, treatment of 13
with iodosylbenzene in the presence of boron trifluoride–
diethyl ether in CH2Cl2 at 0 °C followed by treatment with
aqueous sodium tetrafluoroborate provided the iodonium tetra-
fluoroborate 14, which was immediately exposed to aqueous
sodium benzenesulfinate at 0 °C to give the cyclized vinyl
sulfone 16,† via the alkylidene carbene intermediate 15, in 83%
overall yield from 13 as the sole product. The absolute
configuration at the newly-generated quaternary centre was
deduced to be R, which was confirmed by the following
conversion. Removal of the benzenesulfonyl moiety in 16 using
Na–Hg under sonication10 afforded 17 in 70% yield. Finally,
oxidation of the allylic methylene in 17 with pyridinium
dichromate (PDC) in the presence of tert-butylhydroperoxide
1
and Celite11 produced the enone 18, whose H NMR data and
optical rotation, [a]D + 101 (c 1.28, EtOH) {lit.3a [a]D + 114 (c
1.36, EtOH)}, were identical with those reported. Since the
compound 18 has already been converted into
(2)-a-cuparenone 1 by a two-step sequence,3a the present
synthesis constitutes a formal total synthesis of 1.
In summary, we have developed an efficient and un-
precedented methodology for assembling benzylic quaternary
stereogenic centres and demonstrated the formal total synthesis
of (2)-a-cuparenone as an application of the procedure.
We are grateful to Professor Masahito Ochiai and Mr Takuya
Sueda, University of Tokushima, for valuable discussions.
5 H. M. Sweers and C.-H. Wong, J. Am. Chem. Soc., 1986, 108, 6421;
Y.-F. Wang and C.-H. Wong, J. Org. Chem., 1988, 53, 3127;
Y.-F. Wang, J. J. Lalonde, M. Momongan, D. E. Bergbreiter and
C.-H. Wong, J. Am. Chem. Soc., 1988, 110, 7200.
6 (a) S. Takano, K. Samizu and K. Ogasawara, Synlett, 1993, 393; (b)
T. Sakamoto, Y. Kondo and H. Yamanaka, Heterocycles, 1993, 36,
2437; (c) Y. Koga, M. Sodeoka and M. Shibasaki, Tetrahedron Lett.,
1994, 35, 1227.
Footnotes
* E-mail: shishido@ph.tokushima-u.ac.jp
† Selected spectroscopic data for 16; pale yellow oil; [a]D +34.6 (c 0.38,
CHCl3); dH(200 MHz, CDCl3) 1.45 (3 H, s), 2.14–2.21 (2 H, m), 2.31 (3 H,
s), 2.54–2.73 (2 H, m), 6.82 (1 H, s), 7.09 (4 H, s), 7.55–7.61 (3 H, m),
7.91–8.43 (2 H, m); dC(100 MHz, CDCl3) 20.9 (CH3), 26.6 (CH3), 30.0
(CH2), 41.0 (CH2), 52.9 (C), 124.5 (CH 3 2), 128.0 (CH 3 2), 129.2 (CH
3 2), 129.3 (CH 3 2), 133.5 (CH), 136.2 (C), 139.5 (C), 143.2 (C), 143.8
(C), 149.5 (CH); m/z (EI) 312 (M+); HRMS (EI) calc. for C19H20O2S,
312.1184. Found: 312.1169. Anal. calc. for C19H20O2S: C, 73.04; H, 6.45.
Found: C, 72.89; H, 6.49%.
7 H. Frauenrath, Synthesis, 1989, 721.
8 P. A. Levene and G. M. Meyer, Org. Synth., 1943, Coll. Vol. II, 288.
9 G. Guanti, E. Narisano, T. Podgorski, S. Thea and A. Williams,
Tetrahedron, 1990, 46, 7081.
10 R. E. Dabby, J. Kenyon and R. F. Mason, J. Chem. Soc., 1952, 4881.
11 N. Chidambaram and S. Chandrasekaran, J. Org. Chem., 1987, 52,
5048.
References
1 K. Fuji, Chem. Rev., 1993, 93, 2037.
2 T. Takemoto, M. Sodeoka, H. Sasai and M. Shibasaki, J. Am. Chem.
Soc., 1993, 115, 8477.
Received in Cambridge, UK, 18th April 1997; Com.
7/02667F
1168
Chem. Commun., 1997