Six-Coordinate Adducts of Nb(V) and Ta(V)
Inorganic Chemistry, Vol. 36, No. 17, 1997 3627
Table 6. Selected Structural Parameters for Six-Coordinate Derivatives of Nb and Ta
species
L-M-X(trans), deg
L-M-X(cis), deg
∑R, deg
ref
[NbCl5(NCH)]
178.52(7)
178.1(2)
177.5(1)
180.0
82.06(5), 83.49(5), 82.06(5), 83.49(5)
83.5(3), 85.5(3), 87.4(4), 88.0(4)
83.7(1), 84.2(1), 84.7(1), 86.8(1)
84.9(1), 84.9(1), 84.9(1), 84.9(1)
84.5(2), 84.7(2), 85.0(2), 86.3(2)
83.0(2), 88.1(1),
82.8(1), 83.3(1), 84.3(1), 86.1(1)
82.8(2), 83.8(2), 84.6(2), 86.1(2)
79.8(3), 80.5(3), 81.6(2), 91.6(5)
78.5(1), 79.2(2), 89.6(1), 91.0(2)
56(2), 62(2), 92.7(1), 94.6(1)
-28.9
-15.5
-20.6
-19.4
-19.4
-19.4
-23.5
-22.6
-26.4
-21.6
-54.7
-23.0
-22.7
-50.3
-11.0
29
30
31
19
19
19
a
a
a
32
15
a
[NbCl5(PMe2Ph)]-
trans-[TaCl4{OSi(C6H4Me-2)3}(OEt2)]
trans-[NbCl4(OC6H3Me2-2,6)(THF)]
cis-mer-[NbCl3(OC6H3Me2-2,6)2(THF)]
cis-mer-[NbCl3(OC6H3Ph2-2,6)2(THF)]
cis-mer-[NbCl3(OC6H3Pri2-2,6)2(py)] (3a)
cis-mer-[TaCl3(OC6H3Pri2-2,6)2(py)] (3b)
cis-mer-[NbCl3(OC6H3Pri2-2,6)2(PMe2Ph)] (4a)
cis-mer-[TaCl3(NMe2)2(HNMe2)]
177.4(3)
172.0(2)
179.6(1)
179.6(2)
171.8(6)
169.3(2)
174.96(5)
176.45(7)
176.51(7)
174.5(1)
178.4(1)
trans-trans-[TaCl(H)2(OC6H3But2-2,6)2(PMePh2)]
trans-mer-[NbCl2(OC6H3Pri2-2,6)3(PMe2Ph)] (6a)
trans-mer-[TaCl2(OC6H3Pri2-2,6)3(PMe2Ph)] (6b)
trans-mer-[Ta(H)2(OC6H3Pri2-2,6)3(PMe2Ph)]
77.76(3), 81.00(3), 88.89(6), 89.32(7)
78.28(3), 81.61(3), 88.26(7), 89.20(7)
69(1), 66(2), 89.3(1), 85.4(1)
a
15
a
mer-[NbCl3(OC6H3Pri2-2,6)3]-
7
84.24(4), 85.61(4), 89.14(9), 90.02(9)
a This work.
plexes. The M-N(py) distances of 2.331(4) and 2.315(6) Å
in 3a and 3b can be compared with values of 2.291(21) Å in
[TaCl2Me3(bipy)],20 2.420(12) Å in [NbBr4(CF3CCCF3)(py)]-,21
2.479(4) Å in [Nb(NBut)Cl4(py)]-,22 2.28(2) Å in [Ta{C(Me)C-
(Me)CHCMe3}(OC6H3Pri2-2,6)3(py)],23 2.348(6) and 2.408(6)
Å in [Ta(NAr)(OC6H3Pri2-2,6)Cl2(py)2],24 and 2.316(14) and
2.324(15) Å in [Ta(NSiBut3)2Me(py)2].25 The Nb-P distances
of 2.742(8) and 2.7666(9) Å in 4a and 6 are among the longest
niobium-phosphine distances so far reported. They are only
slightly shorter than one of the Nb-P distances of 2.787(1) Å
in [CpNbCl3(dppe)]26 and compare with values of 2.74-2.75
Å found in a series of phosphine adducts of niobium cluster
compounds.27,28 The adducts 3a, 3b, 4a, 6a, and 6b (Figures
2-4) structurally characterized in this study are examples of a
class of six-coordinate derivatives of Nb and Ta of general
formula [MX5L] where X represents either a single type of
monoanionic ligand or a set of monoanionic ligands, e.g. halide,
hydride, alkoxide, aryloxide, siloxide, amide groups, etc. The
previously characterized six-coordinate hydride compounds
trans-mer-[Ta(H)2(OC6H3Pri2-2,6)3(PMe2Ph)] and trans-trans-
[TaCl(H)2(OC6H3But2-2,6)2(PMePh2)] are highly distorted in the
solid state with acute H-Ta-P angles of 56(2)-69(1)°.16q In
Table 6 are collected the L-M-X angles (cis and trans) for
these compounds along with the corresponding parameters for
the new molecules obtained in this study and certain related
Nb and Ta derivatives in the literature.15,19,10-32 It can be seen
that there is a consistent distortion in which some or all of the
cis groups are bent toward the donor ligand. This is clearly
evident in the simple formonitrile complex [NbCl5(NCH)]29 (all
ligands being sterically very innocent) where all four cis-chloride
groups form angles of 82-83° with the nitrile ligand (Table
6). The resulting structure can hence be best described as a
square pyramidal arrangement of chloride groups to which a
nitrile group is bound axially. Similar, but less pronounced
distortions are evident in the d1 anion [NbCl5(PMe2Ph)]- and
the monosiloxide trans-[TaCl4{OSi(C6H4Me-2)3}(OEt2)]31 (Table
6). The pyridine adducts cis-mer-[MCl3(OC6H3Pri2-2,6)2(py)]
(M ) Nb (3a), Ta (3b)) obtained in this study and the 2,6-
dimethylphenoxide complex cis-mer-[NbCl3(OC6H3Me2-2,6)2-
(THF)]19 possess solid state structures in which the three chloride
ligands and one aryloxide oxygen atom are bent toward the
neutral donor group. In the related complex cis-mer-
[NbCl3(OC6H3Pri2-2,6)2(PMe2Ph)] (4a), all three chloride ligands
form angles of 80-82° with the cis-phosphine ligand while the
angle formed with the aryloxide group is 91.6(5)o. In trans-
mer-[MCl2(OC6H3Pri2-2,6)3(PMe2Ph)] (6), the two trans-
chloride ligands are distinctly bent toward the PMe2Ph group
although not as dramatically as the hydride groups in trans-
mer-[Ta(H)2(OC6H3Pri2-2,6)3(PMe2Ph)] or trans-trans-[TaCl-
(H)2(OC6H3But2-2,6)2(PMePh2)] (Table 6).
In order to more readily quantitate this specific distortion from
octahedral geometry we introduce the parameter ∑R defined
as follows: ∑R ) ∑[(cis-L-M-X) - 90] (Table 6). All of
the group 5 metal derivatives can be seen to have negative values
of ∑R (as defined), consistent with the bending of these groups
toward the donor ligand. We have also evaluated this parameter
for all of the species [MCl5(L)]n- contained in the Cambridge
Crystallographic Database (Table 7).33-49 A definite trend is
evident, with the value of ∑R becoming less negative as the
(20) Drew, M. G. B.; Wilkins, J. D. J. Chem. Soc., Dalton Trans. 1973,
1830.
(21) Felten, C.; Olbrich, F.; Rehder, D. Organometallics 1993, 12, 982.
(22) Clegg, W.; Errington, R. J.; Hockless, D. C. R.; Redshaw, C.
Polyhedron 1991, 10, 1959.
(23) Wallace, K. C.; Liu, A. H.; Davis, W. M.; Schrock, R. R. Organo-
metallics 1989, 8, 644.
(24) Chao, Y. W.; Wexler, P. A.; Wigley, D. E. Inorg. Chem. 1989, 28,
3860.
(25) Schaller, C. P.; Wolczanski, P. T. Inorg. Chem. 1993, 32, 131.
(26) Prout, K.; Daran, J.-C. Acta Crystallogr., Sect. B 1979, 35, 2882.
(27) Cotton, F. A.; Diebold, M. P.; Feng, X.; Roth, W. J. Inorg. Chem.
1988, 27, 3413.
(33) Sobota, P.; Utko, J.; Lis, T. J. Chem. Soc., Dalton Trans. 1984, 2077.
(34) Prinz, H.; Bott, S. G.; Atwood, J. L. J. Am. Chem. Soc. 1986, 108,
2113.
(35) Scholz, J.; Richter, B.; Goddard, R.; Kruger, C. Chem. Ber. 1993,
126, 57.
(36) Biagini, P.; Calderazzo, F.; Pampaloni, G.; Zanazzi, P. F. Gazz. Chim.
Ital. 1987, 117, 27.
(37) Brencic, J. V.; Ceh, B.; Leban, I. Z. Anorg. Allg. Chem. 1988, 565,
163.
(38) Lis, T. Acta Crystallogr., Sect. B 1980, 36, 2782.
(39) Stenger, H.; Weller, F.; Dehnicke, K. Z. Anorg. Allg. Chem. 1991,
606, 109.
(28) Imoto, H.; Hayakawa, S.; Morita, N.; Saito, T. Inorg. Chem. 1990,
29, 2007.
(29) Chavant, C.; Constant, G.; Jeannin, Y.; Morancho, R. Acta Crystallogr.,
Sect. B 1975, 31, 1823.
(40) Bucknor, S.; Cotton, F. A.; Falvello, L. R.; Reid, A. H., Jr.;
Schmulbach, C. D. Inorg. Chem. 1987, 26, 2954.
(41) Rochon, F. D.; Melanson, R.; Pi-Chang Kong. Acta Crystallogr., Sect.
C 1991, 47, 732.
(30) Bott, S. G.; Mazid, M. A.; Hursthouse, M. B.; Sullivan, A. C. J. Chem.
Soc., Dalton Trans. 1991, 355.
(31) Cotton, F. A.; Diebold, M. P.; Roth, W. J. Acta Crystallogr., Sect. C
1990, 46, 1624.
(32) Chisholm, M. H.; Huffman, J. C.; Tan, L.-S. Inorg. Chem. 1981, 20,
1859.
(42) Bandoli, G.; Clemente, D. A.; Mazzi, U.; Roncari, E. J. Chem. Soc.,
Dalton Trans. 1982, 1381.
(43) Subramanian, S.; Zaworotko, M. J. Can. J. Chem. 1993, 71, 433.
(44) Keppler, B. K.; Wehe, D.; Endres, H.; Rupp, W. Inorg. Chem. 1987,
26, 844.
(45) Bonnet, J.-J.; Jeannin, Y. J. Inorg. Nucl. Chem. 1973, 35, 4103.