Macromolecules
Note
Figure 5. Cyclic voltammograms of (a) PBBN and (b) PBBN−TCBD in dichloromethane solution containing 0.1 M nBu4NPF6. Epa and Epc are
anodic and cathodic peak potentials, respectively, with “ox” denoting oxidation and “red” denoting reduction. Red arrows describe the directions of
scans.
It can be seen from Figure 5b that PBBN−TCBD shows an
onset oxidation potential (Φox = 0.74 V) and an onset
reduction potential (Φred = −0.61 V), which were obtained
from the intersection of the two tangents drawn at the rising
current and the baseline charging current of the CV curves.
Under the premise that the energy level of Fc+/Fc is 4.80 eV
below the vacuum level,32 the energy levels of HOMO and
AUTHOR INFORMATION
■
Corresponding Author
1-330-972-5290.
Notes
The authors declare no competing financial interest.
LUMO are estimated to be EHOMO = −5.54 eV and ELUMO
=
ACKNOWLEDGMENTS
−4.19 eV, respectively. Correspondingly, the bandgap energy
(EgCV) of PBBN−TCBD based on cyclic voltammetric results is
1.35 eV. Note that this value is slightly lower than Egopt = 1.59
eV determined by UV−vis spectroscopy. The lower electro-
chemical band gap of PBBN−TCBD relative to its optical band
gap may be interpreted by the ion pairing effects, indicative of a
very low exciton binding energy. Above, we estimated energy
levels of HOMOs and LUMOs by using onset potentials
because reversible oxidation/reduction potentials were not
identified for PBBN−TCBD, while half-wave potentials had to
be used in the rigorous sense. On the basis of the observations
made above, it can be concluded that intramolecular charge-
transfer interactions indeed induced a low bandgap energy in
PBBN−TCBD.
■
The authors acknowledge with gratitude that this study was
supported in part by the National Science Foundation under
Grant CBET-0755763.
REFERENCES
■
(1) Weder, C. Poly(arylene ethynylene)s: From Synthesis to Application;
Springer: New York, 2005.
(2) Bunz, U. H. F. Chem. Rev. 2000, 100, 1605−1644.
(3) Winder, C.; Sariciftci, N. S. J. Mater. Chem. 2004, 14, 1077−1086.
(4) Bundgaard, E.; Krebs, F. C. Solar Energy Mater. Solar Cells 2007,
91, 954−985.
(5) Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem.
Mater. 2004, 16, 4556−4573.
(6) Chen, M.; Crispin, X.; Perzon, E.; Andersson, M. R.; Pullerits, T.;
Andersson, M.; Inganas, O.; Berggren, M. Appl. Phys. Lett. 2005, 87,
252105.
̈
CONCLUSION
■
́
(7) Soudan, P.; Lucas, P.; Ho, H. A.; Jobin, D.; Breau, L.; Belanger,
To summarize, we have demonstrated a facile approach toward
the synthesis of a poly(arylene ethynylene) having donor−
acceptor type chromophores in the side chains. A precursor π-
conjugated polymer with reasonably high molecular weight was
obtained by the Sonogashira reaction between one monomer
with terminal acetylenes and the other with activated diiodide.
The selective reaction of TCNE with activated dioctylanilino-
substituted alkynes in the side chains of precursor polymer
afforded the target poly(arylene ethynylene). This unique
polymer shows enhanced thermal stability and exhibits strong
intramolecular charge-transfer interactions, resulting in a very
low bandgap of poly(arylene ethynylene). Along with the
inherent features of poly(arylene ethynylene), this low bandgap
π-conjugated polymer is a promising material for applications in
nonlinear optical devices, organic photovoltaic devices, and
light-emitting diodes.
D. J. Mater. Chem. 2001, 11, 773−782.
(8) Ajayaghosh, A. Chem. Soc. Rev. 2003, 32, 181−191.
(9) Roncali, J. Chem. Rev. 1997, 97, 173−205.
(10) Ashraf, R. S.; Klemm, E. J. Polym. Sci., Part A: Polym. Chem.
2005, 43, 6445−6454.
(11) Morikita, T.; Yamaguchi, I.; Yamamoto, T. Adv. Mater. 2001, 13,
1862−1864.
(12) Palai, A. K.; Mishra, S. P.; Kumar, A.; Srivastava, R.;
Kamalasanan, M. N.; Patri, M. Eur. Polym. J. 2010, 46, 1940−1951.
(13) Miller, J. S. Angew. Chem., Int. Ed. 2006, 45, 2508−2525.
(14) Huang, W.; Han, C. D. Macromolecules 2012, 45, 4425−4428.
(15) Bruce, M. I.; Rodgers, J. R.; Snow, M. R.; Swincer, A. G. J. Chem.
Soc., Chem. Commun. 1981, 271−272.
(16) Kivala, M.; Diederich, F. Acc. Chem. Res. 2009, 42, 235−248.
(17) Kivala, M.; Boudon, C.; Gisselbrecht, J.-P.; Seiler, P.; Gross, M.;
Diederich, F. Angew. Chem., Int. Ed. 2007, 46, 6357−6360.
(18) Kivala, M.; Stanoeva, T.; Michinobu, T.; Frank, B.; Gescheidt,
G.; Diederich, F. Chem.Eur. J. 2008, 14, 7638−7647.
(19) Michinobu, T.; May, J. C.; Lim, J. H.; Boudon, C.; Gisselbrecht,
J.-P.; Seiler, P.; Gross, M.; Biaggio, I.; Diederich, F. Chem. Commun.
2005, 737−739.
ASSOCIATED CONTENT
■
S
* Supporting Information
Detailed experimental procedures and characterizations of
monomers and polymers. This material is available free of
(20) Michinobu, T.; Boudon, C.; Gisselbrecht, J.-P.; Seiler, P.; Frank,
B.; Moonen, N. N. P.; Gross, M.; Diederich, F. Chem.Eur. J. 2006,
12, 1889−1905.
2036
dx.doi.org/10.1021/ma302576p | Macromolecules 2013, 46, 2032−2037