8102
C. Che6rin et al. / Tetrahedron Letters 44 (2003) 8099–8102
2. (a) Rideout, D. C.; Breslow, R. J. Am. Chem. Soc. 1980,
tions of acrylic ester derivatives, CH2ꢀC(CO2R)CH-
(OAc)R%, but they involve Michael addition/elimination
cascade reactions: (a) Drewes, S. E.; Roos, G. H. P.
Tetrahedron 1988, 44, 4653–4670; (b) Drewes, S. E.;
Emslie, N. D.; Karodia, N.; Loizou, G. Synth. Commun.
1990, 20, 1437–1443; (c) Bauchat, P.; Le Rouille´, E.;
Foucaud, A. Bull. Soc. Chim. Fr. 1991, 128, 267–271; (d)
Roy, O.; Riahi, A.; He´nin, F.; Muzart, J. Tetrahedron
2000, 56, 8133–8140; (e) Im, J.; Lee, C. G.; Kim, H. R.;
Kim, J. N. Tetrahedron Lett. 2003, 44, 2987–2990.
12. The substitution of 6-alkyl-4-cyclohexenyl substituted-
benzoates by C-, N and S-nucleophiles has been reported
in refluxing protic solvents: Magid, R. G. Tetrahedron
1980, 36, 1901–1930 and references cited therein.
13. Exclusive formation of the CꢁS bond to form the allylic
sulfone is in agreement with literature: Eichelmann, H.;
Gais, H.-J. Tetrahedron: Asymmetry 1995, 6, 643–646.
14. (a) Keinan, E.; Peretz, M. J. Org. Chem. 1983, 48,
5302–5309; (b) Von Matt, P.; Lloyd-Jones, G. C.;
Minidis, A. B. E.; Pfaltz, A.; Macko, L.; Neuburger, M.;
Zehnder, M.; Ru¨egger, H.; Pregosin, P. S. Helv. Chim.
Acta 1995, 78, 265–284.
102, 7816–7817; (b) Grieco, P. A.; Garner, P.; He, Z.
Tetrahedron Lett. 1983, 24, 1897–1900; (c) Breslow, R.;
Maitra, U.; Rideout, D. C. Tetrahedron Lett. 1983, 24,
1901–1904; (d) Breslow, R.; Maitra, U. Tetrahedron Lett.
1984, 25, 1239–1240; (e) Grieco, P. A.; Yoshida, K.;
Garner, P. J. Org. Chem. 1983, 48, 3137–3139.
3. Breslow, R. Acc. Chem. Res. 1991, 24, 159–164.
4. Reichardt, C. Solvents and Solvent Effects in Organic
Chemistry, 2nd ed.; VCH: Weinheim, 1988.
5. (a) Hegedus, L. S. Transition Metals in the Synthesis of
Complex Organic Molecules; University Science Books:
Mill Valley, 1994; (b) Trost, B. M.; Vrankren, D. L. V.
Chem. Rev. 1996, 96, 395–422.
6. Safi, M.; Sinou, D. Tetrahedron Lett. 1991, 32, 2025–
2028.
7. For reviews, see: (a) Geneˆt, J.-P.; Savignac, M. J.
Organomet. Chem. 1999, 576, 305–317; (b) Lindstro¨m, U.
M. Chem. Rev. 2002, 102, 2751–2772; (c) Manabe, K.;
Kobayashi, S. Chem. Eur. J. 2002, 8, 4094–4101; (d)
Sinou, D. Adv. Synth. Catal. 2002, 344, 221–237.
8. Le Bras, J.; Muzart, J. Tetrahedron Lett. 2002, 43, 431.
9. Deionized water was used in all experiments.
15. (S)-1-Acetoxy-1,3-diphenylpropene, 92–99% e.e., was
prepared from the corresponding enantio-enriched allylic
alcohol obtained by stoichiometric kinetic resolution
using Sharpless oxidation method: (a) Martin, V. S.;
Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.;
Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237–6240;
(b) Roos, H. P.; Donovan, A. R. Tetrahedron: Asymme-
try 1999, 10, 991–1000.
10. Commercial co-solvents were used as received.
11. Allylic substitution at the exocyclic center of 2-(ace-
toxymethyl)-2-cyclohexenone by acetylacetone has been
performed in refluxing EtOH with NEt3 as base in the
absence of a transition metal-catalyst: Rezgui, F.; El
Ga¨ıed, M. M. Tetrahedron 1997, 53, 15711–15716. When
1 was subjected to such conditions for 20 h, no CꢁC bond
formation was observed; only ethyl-ether, PhCH(OEt)-
CHꢀCHPh, was produced (75% yield). The literature
contains various examples of C- and O-allylic substitu-
16. March, J. Advanced Organic Chemistry, 4th ed.; Wiley:
New York, 1992.