662 J ournal of Medicinal Chemistry, 2000, Vol. 43, No. 4
Sall et al.
with EtOAc (2 × 200 mL). The combined organic layers were
dried (Na2SO4), filtered, and concentrated in vacuo to give
25.80 g of an oil. Purification by MPLC (5:15:80 TEA:THF:
hexanes) afforded product 30 as a clear oil which solidified on
standing (21.50 g; 79.30 mmol; 94%): 1H NMR (CDCl3) δ 8.17
(d, J ) 2.4 Hz, 1H), 7.62 (dd, J ) 8.8 and 2.6 Hz, 1H), 6.70 (d,
J ) 8.8 Hz, 1H), 4.40 (t, J ) 5.8 Hz, 2H), 2.86 (t, J ) 5.9 Hz,
2H), 2.75-2.66 (m, 4H), 1.97-1.85 (m, 4H); IR (CHCl3) 2967,
1586, 1472, 1460, 1371, 1351, 1302, 1282, 828 cm-1; FDMS
m/e: 270, 272 (M+). Anal. (C11H15BrN2O) C, H, N.
Refer en ces
(1) (a) Rosenberg, R. D. Chemistry of the Hemostatic Mechanism
and Its Relation to the Action of Heparin. Fed. Proc., Fed. Am.
Soc. Exp. Biol. 1977, 36, 10-18. (b) Smith G. F.; Sundboom J .
L. Heparin and Protease Inhibition. II. The Role of Heparin in
the ATIII Inactivation of Thrombin, Plasmin, and Trypsin.
Thromb. Res. 1981, 22, 115-133.
(2) (a) O’Reilly, R. A. Vitamin K Antagonists. In Hemostasis and
Thrombosis: Basic Principles and Clinical Practice, 2nd ed.;
Colman, R. W., Hirsh, J ., Marder, V. J ., Salzman, E. W., Eds.;
J . B. Lippincott: Philadelphia, 1987; pp 1367-1372. (b) Hirsch
J . Oral Anticoagulants. N. Engl. J . Med. 1991, 324, 1865-1875.
(3) For a general discussion of the role of thrombin in thrombogen-
esis, see: (a) Machovich, R. Thrombin and Hemostasis. In The
Thrombin, Vol. 1; Machovich, R., Ed.; CRC Press: Boca Raton,
FL, 1984; pp 1-22. (b) Hirsh, J .; Salzman, E. W.; Marder, V. J .;
Colman, R. W. Overview of the Thrombotic Process and Its
Therapy. In Hemostasis and Thrombosis: Basic Principles and
Clinical Practice, 2nd ed.; Colman, R. W., Hirsh, J ., Marder, V.
J ., Salzman, E. W., Eds.; J . B. Lippincott: Philadelphia, 1987;
pp 1063-1072.
(4) (a) Hirsh, J .; Salzman, E. W. Pathogenesis of Venous Throm-
boembolism. In Hemostasis and Thrombosis: Basic Principles
and Clinical Practice, 2nd ed.; Colman, R. W., Hirsh, J ., Marder,
V. J ., Salzman, E. W., Eds.; J . B. Lippincott: Philadelphia, 1987;
pp 1199-1207. (b) Barnett, H. J . M. Thrombotic Processes in
Cerebrovascular Disease. In Hemostasis and Thrombosis: Basic
Principles and Clinical Practice, 2nd ed.; Colman, R. W., Hirsh,
J ., Marder, V. J ., Salzman, E. W., Eds.; J . B. Lippincott:
Philadelphia, 1987; pp 1301-1315.
(5) Stein, B.; Fuster, V.; Halperin, J . L.; Chesebro, J . H. Antithrom-
botic Therapy in Cardiac Disease. An Emerging Approach Based
on Pathogenesis and Risk. Circulation 1989, 80, 1501-1513.
(6) For recent reviews on approaches to the design of active site
directed thrombin inhibitors, see: (a) Kimball, S. D. Oral
Thrombin Inhibitors: Challenges and Progress.Handb. Exp.
Pharmacol. 1999, 132 (Antithrombotics), 367-396. (b) Menear,
K. Progress Towards the Discovery of Orally Active Thrombin
Inhibitors. Curr. Med. Chem. 1998, 5, 457-468. (c) Want, R.;
Liu, L.; Lai, L.; Tang, Y. Structure-affinity Relationship of
Thrombin Inhibitors. Wuli Huaxue Xuebao 1998, 14, 887-892.
(d) Sanderson, P. E. J ., Naylor-Olsen, A. M. Thrombin Inhibitor
Design. Curr. Med. Chem. 1998, 5, 289-304. (e) Kaiser, B.
Thrombin and Factor Xa Inhibitors. Drugs Future 1998, 23,
423-436. (f) Uzan, A. Antithrombotic Agents. Emerging Drugs
1998, 3, 189-208. (g) Wiley, M. R.; Fisher, M. J . Small Molecule
Thrombin Inhibitors. Exp. Opin. Ther. Patents 1997, 7, 1265-
1282. (h) Edmunds, J . J .; Rapundalo, S. T. Thrombin and Factor
Xa Inhibition. Ann. Rep. Med. Chem. 1996, 31, 51-60.
(7) (a) Sall, D. J .; Bastian, J . A.; Briggs, S. L.; Buben, J . A.;
Chirgadze, N. Y.; Clawson, D. K.; Denney, M. L.; Giera, D. D.;
Gifford-Moore, D. S.; Harper, R. W.; Hauser, K. L.; Klimkowski,
V. J .; Kohn, T. J .; Lin, H.-S.; McCowan, J . R.; Palkowitz, A. D.;
Smith, G. F.; Takeuchi, K.; Thrasher, K. J .; Tinsley, J . M.;
Utterback, B. G.; Yan, S.-CB.; Zhang, M. Dibasic Benzo[b]-
thiophene Derivatives as a Novel Class of Active Site Directed
Thrombin Inhibitors. 1. Determination of the Serine Protease
Selectivity, Structure-Activity Relationships and Binding Ori-
entation. J . Med. Chem. 1997, 40, 3489-3493. (b) Takeuchi K.;
Kohn T. J .; Sall D. J .; Denney M. L.; McCowan J . R.; Smith G.
F.; Gifford-Moore D. S. Dibasic Benzo[b]thiophene Derivatives
as a Novel Class of Active Site Directed Thrombin Inhibitors. 4.
SAR Studies on the Conformationally Restricted C-3-Side Chain
of Hydroxybenzo[b]thiophenes. Bioorg Med. Chem. Lett. 1999,
9, 759-764.
6-H yd r oxy-2-[6-[2-(1-p yr r olid in yl)et h oxy]p yr id -3-yl]-
b en zo[b]t h iop h en -3-yl 3-Met h oxy-4-[(1-p yr r olid in yl)-
m eth yl]p h en yl Keton e Dioxa la te (31b). A -78 °C solution
of pyridyl bromide 30 (3.25 g, 12.0 mmol) in THF (40 mL) was
treated with n-BuLi (1.6 M in hexanes; 8.10 mL, 13.00 mmol).
After 1 h, a slurry of MgBr2 [freshly prepared from Mg (365
mg, 15.0 mmol) and 1.3 mL of 1,2-dibromoethane] in THF (20
mL) was added. The reaction mixture was stirred at -78 °C
for an additional 10 min, and then the cold bath was removed.
After 45 min, the Grignard reagent was added dropwise via a
cannula to a 0 °C solution of benzo[b]thiophene 27 (5.00 g,
10.00 mmol) in THF (50 mL). The resulting mixture was
stirred for 2 h at 0 °C and then was allowed to warm to
ambient temperature. After 5 h, the reaction mixture was
poured into saturated aqueous NH4Cl (200 mL). The layers
were separated, and the aqueous phase was extracted with
CHCl3 (3 × 50 mL). The combined organic phases were dried
(Na2SO4), filtered, and concentrated in vacuo. Partial purifica-
tion was achieved by MPLC (gradient of 85:10:5 hexanes:THF:
TEA to 75:20:5 hexanes:THF:TEA) to afford 2.90 g (4.48 mmol;
45%) of semi-pure product 31a as a viscous orange oil: IR
(CHCl3) 2966, 1603, 1463, 1285, 1250 cm-1. FAB-HRMS: m/e,
calcd for C39H42N3O4S: 648.2896. Found: 648.2889 (M + 1).
Product 31a was taken on without further purification.
Intermediate ketone 31a (2.90 g; 4.48 mmol) was depro-
tected using the conditions described in the preparation of
compound 28b to afford phenol 31b as a yellow foam in 48%
yield following PCTLC (gradient of 75:20:5 hexanes:THF:TEA
to 60:35:5 hexanes:THF:TEA): 1H NMR (CDCl3) δ 8.12 (d, J
) 2.3 Hz, 1H), 7.47 (d, J ) 8.8 Hz, 1H), 7.47-7.39 (m, 2H),
7.20 (s, 2H), 6.77 (d, J ) 2.0 Hz, 1H), 6.64 (dd, J ) 8.9 and 2.1
Hz, 1H), 6.35 (d, J ) 8.7 Hz, 1H), 4.44 (t, J ) 5.3 Hz, 2H),
3.74 (s, 3H), 3.63 (s, 2H), 2.95 (t, J ) 5.3 Hz, 2H), 2.87-2.79
(m, 4H), 2.69-2.58 (m, 4H), 2.00-1.84 (m, 8H), no phenolic
OH observed. A sample of product 31b was converted to the
dioxalate salt: IR (KBr) 2967, 1718, 1602, 1525, 1466, 1413,
1285, 1271, 1207, 1029, 720 cm-1; FDMS 558 (M + 1). Anal.
(C32H35N3O4S‚2C2H2O4) C, H, N.
1-[2-[[5-[6-Hyd r oxy-3-[[3-m eth oxy-4-[(1-p yr r olid in yl)-
m et h yl]p h en yl]m et h yl]b en zo[b]t h iop h en -2-yl]p yr id -2-
yl]oxy]eth yl]p yr r olid in e (31c). Employing the conditions
described in the preparation of compounds 5a -d , only using
DIBAL-H as the reducing agent, product 31c was prepared
from ketone 31b in 68% yield following PCTLC (gradient of
75:20:5 hexanes:THF:TEA to 60:35:5 hexanes:THF:TEA): 1H
NMR (CDCl3) δ 8.22 (d, J ) 2.4 Hz, 1H), 7.53 (dd, J ) 8.4 and
2.3 Hz, 1H), 7.20 (d, J ) 8.7 Hz, 1H), 7.13 (d, J ) 7.5 Hz, 1H),
6.99 (d, J ) 2.1 Hz, 1H), 6.63 (d, J ) 11.2 Hz, 1H), 6.62-6.58
(m, 2H), 6.45 (dd, J ) 8.7 and 2.1 Hz, 1H), 4.49 (t, J ) 5.7 Hz,
2H), 4.13 (s, 2H), 3.65 (s, 2H), 3.51 (s, 3H), 2.95 (t, J ) 5.7 Hz,
2H), 2.69-2.61 (m, 8H), 1.86-1.78 (m, 8H), no phenolic OH
observed. The free base of the product was converted to the
dioxalate: IR (KBr) 1719, 1611, 1484, 1468, 1421, 1283, 1243,
1218 cm-1; FDMS 544 (M + 1). Anal. (C32H37N3O3S‚2C2H2O4)
C, H, N.
(8) A preliminary account of only limited aspects of this work has
appeared as a communication in Zhang, M.; Bailey, D. L.;
Bastian, J . A.; Briggs, S. L.; Chirgadze, N. Y.; Clawson, D. K.;
Denney, M. L.; Gifford-Moore, D. S.; Harper, R. W.; J ohnson, L.
M.; Klimkowski, V. J .; Kohn, T. J .; Lin, H. S.; McCowan, J . R.;
Richett, M. E.; Sall, D. J .; Smith, A. J .; Smith, G. F.; Snyder, D.
W.; Takeuchi, K.; Utterback, B. G.; Yan, S. C. B. Dibasic Benzo-
[b]thiophene Derivatives as a Novel Class of Active Site Directed
Thrombin Inhibitors: 2. Side chain Optimization and Demon-
stration of In Vivo Efficacy. Bioorg Med. Chem. Lett. 1999, 9,
775-780.
(9) For
a review of Suzuki coupling reactions see Suzuki, A.
Organoboron compounds in New Synthetic Reactions. Pure Appl.
Chem. 1985, 57, 1749-1758.
(10) For a review of Friedel-Crafts acylation, see: Olah, G. H.
Friedel-Crafts and Related Reactions; Wiley: New York, 1963;
Vol. 1, pp 91-115.
(11) Schmid, C. R.; Sluka, J . P.; Duke; K. M. Nucleophilic Aromatic
Substitution on 3-Aroyl-2-Arylbenzothiophenes. Rapid Access to
Raloxifene and Other Selective Estrogen Receptor Modulators.
Tetrahedron Lett. 1999, 40, 675-678.
Su p p or tin g In for m a tion Ava ila ble: Experimental de-
tails for the synthesis and the physical chemical data for the
amino acids used in the preparation of compounds 4b-d , 4f,
4g, 23a , and 27; physical chemical properties of compounds
1a , 4b-g, 5a -d , 7a -l, 8a -i, 10a , 16a , and 17. This material
acs.org.