8742
J. Am. Chem. Soc. 1997, 119, 8742-8743
Covalent 3- and 2-Dimensional Titanium-Quinone
Networks
Thomas P. Vaid, Emil B. Lobkovsky, and
Peter T. Wolczanski*
Cornell UniVersity, Baker Laboratory
Department of Chemistry, Ithaca, New York 14853
ReceiVed May 21, 1997
Extended 3- and 2-dimensional networks derived from
transition or main group metals combined with ligands pos-
sessing multiple binding sites comprise a forefront area of
research in solid state chemistry.1-3 Networks have been
constructed from 4,4′-bipyridine,4-7 pyrazines,6-10 pyrimidine,11
cyanide,3,12-14 azide,15 and larger, more elaborate organic
spacers.3,16-20 For example, tetra(p-cyanophenyl)methane com-
bines with Cu+ to form a predicted diamondoid network,3 and
20
1,3,5-(NtCCtC)3C6H3 spans Ag+ in extending a ThSi2
structural motif to the metal-organic realm. The critical fusion
of metal and organic spacer is usually accomplished through a
framework of dative bonds; consequently, degradation pathways
based on ligand dissociation or solvolysis may be present.
Strong, covalent21 titanium/quinone linkages chosen to encour-
age intermetallic communication (i.e., TiIV-OC6H4O-TiIV
T
TiIIIrOdCC4H4CdOfTiIII) are the crucial connections for the
dense networks reported herein.
Using a modified procedure of Burch,22 Ti(iOPr)4 was treated
with 2.58 equiv of hydroquinone in THF to yield an amorphous
(XRD), red-orange powder upon drying (eq 1). After the
Figure 1. (a) Bioctahedral dititanium building block of [{(OC6H4O)-
(OC6H4OH)Ti}2(µ-OC6H4OH)2]n (2) with all bridges included (distances
in Å, angles in deg): O1-Ti-O3 ) 166.2(2); O1-Ti-O4A ) 76.4-
(2); O1-Ti-O5 ) 92.5(2); O1-Ti-O6 ) 85.5(2); O1A-Ti-O3 )
93.1(2); O1A-Ti-O4A ) 76.4(2); O1A-Ti-O5 ) 161.1(2); O1A-
Ti-O6A ) 89.4(2); O3-Ti-O4A ) 92.2(2); O3-Ti-O5 ) 99.8(2);
O3-Ti-O6A ) 98.0(2); O4A-Ti-O5 ) 89.3(2); O4A-Ti-O6A )
163.0(2); O5-Ti-O6 ) 102.3(2). (b) Distorted octahedral building
block of [cis-Ti(OC6H4O)2py2]n (3a) with all bridges included: O1-
Ti-O3 ) 94.3(2); O1-Ti-N1 ) 82.9(2); O2-Ti-O3 ) 95.8(2); O2-
Ti-N1 ) 85.2(2); N1-Ti-O3 ) 94.3; N1-Ti-O3A ) 170.6(2).
Ti(iOPr)4 + 2.58HOC6H4OH THF, 25 °C8
1/n[Ti(OC6H4O)a(OC6H4OH)3.34-1.83a(OiPr)0.66-0.17a(THF)0.2 n
]
+
1 (0.91 e a e 1.82)
(3.34 + 0.17a)HOiPr (1)
100 °C, 1-4 d
1
8
Et2O or DME
∼1 M HOC6H4OH
[{(OC6H4O)(OC6H4OH)Ti}2(µ-OC6H4OH)2]n
(2)
(3)
2
1
100 °C, 1-4 d8 [cis-Ti(OC6H4O)2py2]n
d. Hydroquinone presumably deaggregates 1, leading to spar-
ingly soluble mono- or dititanium fragments that can be
reconstituted into distinct microcrystalline networks.
py, 1.82 M
3a
HOC6H4OH
Single-crystal X-ray diffraction studies of materials derived
from Et2O (2, eq 2) and pyridine (3a, eq 3) revealed dramatic
solvent-dependent changes in the dimensionality and connectiv-
ity of the metal-organic network. The crystal size (20 × 20
× 60 µm) of [{(OC6H4O)(OC6H4OH)Ti}2(µ-OC6H4OH)2]n (2)
required data aquisition via a synchrotron source (CHESS).23
1
powder was quenched with D2O/DCl, H NMR spectroscopic
analysis of the DOC6H4OD/DOiPr/THF ratio revealed the
empirical formula indicated (1). Addition of HOC6H4OH to 1
in various solvents (∼1 M) enabled a conversion to burgundy,
microcrystalline compounds upon thermolysis at 100 °C for 1-4
(1) Fagan, P. J.; Ward, M. D. Sci. Am. 1992, 267, 48-54.
(2) (a) Zaworotko, M. J. Chem. Soc. ReV. 1994, 23, 283-288. (b) Robson,
R.; Abrahams, B. F.; Batten, S. R.; Gable, R. W.; Hoskins, B. F.; Liu, J.
Supramolecular Architecture; American Chemical Society: Washington,
DC, 1992; Chapter 19.
(3) Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1990, 112, 1546-1554.
(4) Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am. Chem. Soc.
1994, 116, 1151-1152.
(5) Yaghi, O. M.; Li, G. Angew. Chem., Int. Ed. Engl. 1995, 34, 207-
209.
(14) (a) Yu¨nlu¨, K.; Ho¨ck, N.; Fischer, R. D. Angew. Chem., Int. Ed.
Engl. 1985, 24, 879-881. (b) Adam, M.; Brimah, A. K.; Fischer, R. D.;
Xing-Fu, L. Inorg. Chem. 1990, 29, 1595-1597. (c) Behrens, U.; Brimah,
A. K.; Soliman, T. M.; Fischer, R. D.; Apperley, D. C.; Davies, N. A.;
Harris, R. K. Organometallics 1992, 11, 1718-1726.
(15) Mautner, F. A.; Cortes, R.; Lezama, L.; Rojo, T. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 78-80.
(16) (a) Batten, S. R.; Hoskins, B. F.; Robson, R. Angew. Chem., Int.
Ed. Engl. 1997, 36, 636-637. (b) Batten, S. R.; Hoskins, B. F.; Robson,
R. J. Chem. Soc., Chem. Commun. 1991, 445-447. (c) Konnert, J.; Britton,
D. Inorg. Chem. 1966, 5, 1193-1196.
(6) MacGillivray, L. R.; Subramanian, S.; Zaworotko, J. J. Chem. Soc.,
Chem. Comm. 1994, 1325-1326.
(7) Soma, T.; Yuge, H.; Iwamoto, T. Angew. Chem., Int. Ed. Engl. 1994,
33, 1665-1666.
(17) (a) Abrahams, B. F.; Hoskins, B. F.; Mitchail, D. M.; Robson, R.
Nature 1994, 369, 727-729. (b) Abrahams, B. F.; Batten, S. R.; Hamit,
H.; Hoskins, B. F.; Robson, R. Angew. Chem., Int. Ed. Engl. 1996, 35,
1690-1692.
(8) Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A. J. Am. Chem.
Soc. 1995, 117, 4562-4569.
(9) Otieno, T.; Rettig, S. J.; Thompson, R. C.; Trotter, J. Inorg. Chem.
1993, 32, 1607-1611.
(18) (a) Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A. Inorg. Chem.
1997, 36, 1736-1737. (b) Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi,
A. Angew. Chem., Int. Ed. Engl. 1996, 35, 1088-1090.
(10) Real, J. A.; DeMunno, G.; Munoz, M. C.; Julve, M. Inorg. Chem.
1991, 30, 2701-2704.
(19) Kawata, S.; Kitagawa, S.; Kondo, M.; Furuchi, I.; Munakata, M.
Angew. Chem., Int. Ed. Engl. 1994, 33, 1759-1761.
(11) Keller, S. W. Angew. Chem., Int. Ed. Engl. 1997, 36, 247-248.
(12) Entley, W. R.; Girolami, G. S. Science 1995, 268, 397-400.
(13) (a) Gable, R. W.; Hoskins, B. F.; Robson, R. J. Chem. Soc., Chem.
Commun. 1990, 762-763. (b) Abrahams, B. F.; Hoskins, B. F.; Liu, J.;
Robson, R. J. Am. Chem. Soc. 1991, 113, 3045-3051.
(20) Gardner, G. B.; Kiang, Y.-H.; Lee, S.; Asgaonkar, A.; Vendataraman,
D. J. Am. Chem. Soc. 1996, 118, 6946-6953.
(21) Haaland, A. Angew. Chem., Int. Ed. Engl. 1989, 28, 992-1007.
(22) Burch, R. R. Chem. Mater. 1990, 2, 633-635.
S0002-7863(97)01658-2 CCC: $14.00 © 1997 American Chemical Society