K. Ma et al. / Bioorg. Med. Chem. Lett. 21 (2011) 6724–6727
6727
Table 2
Supplementary data
The antiviral effect of the 2-pyrrolinone derivatives
Compound
Anti-HIV-1 activity
SIc
Supplementary data associated with this article can be found, in
a
b
EC50
(l
M)
CC50 (lM)
20
21
22
24
N/A
N/A
790
830
26.6
459
References and notes
0.317
83.7
N/Ad
1. Neamati, N. Expert Opin. Ther. Patents 2002, 12, 709.
2. Billich, A. Curr. Opin. Investig. Drugs 2003, 4, 206.
a
3. Pommier, Y.; Johnson, A. A.; Marchand, C. Nat. Rev. Drug Disc. 2005, 4, 236.
4. Dyda, F.; Hickman, A.; Jenkins, T.; Engelman, A.; Craigie, R.; Davies, D. Science
1994, 266, 1981.
5. Pais, G.; Zhang, X.; Marchand, C.; Neamati, N.; Cowansage, K.; Svarovskaia, E.;
Pathak, V.; Tang, Y.; Nicklaus, M.; Pommier, Y. J. Med. Chem. 2002, 45, 3184.
6. Nicklaus, M.; Neamati, N.; Hong, H.; Mazumder, A.; Sunder, S.; Chen, J.; Milne,
G.; Pommiers, Y. J. Med. Chem. 1997, 40, 920.
Effective concentration required to protect TZM-bl cells against the stimulated
luciferase enzymatic activity of HIV by 50%.
b
Cytostatic concentration required to kill TZM-bl cells by 50%.
Selectivity index (SI) is a ratio of CC50 value/EC50 value.
N/A: no activity.
c
d
7. Nair, V.; Chi, G.; Ptak, R.; Neamati, N. J. Med. Chem. 2006, 49, 445.
8. Boros, E.; Edwards, C.; Foster, S.; Fuji, M.; Fujiwara, T.; Garvey, E.; Golden, P.;
Hazen, R.; Jeffrey, J.; Johns, B. J. Med. Chem. 2009, 52, 2754.
9. Hazuda, D. J.; Felock, P.; Witmer, M.; Wolfe, A.; Stillmock, K.; Grobler, J. A.;
Espeseth, A.; Gabryelski, L.; Schleif, W.; Blau, C.; Miller, M. D. Science 2000, 287,
646.
10. Blair, W.; Perros, M. Expet. Opin. Investig. Drugs 2004, 13, 1065.
11. Dayam, R.; Al-Mawsawi, L. Q.; Zawahir, Z.; Witvrouw, M.; Debyser, Z.; Neamati,
N. J. Med. Chem. 2008, 51, 1136.
12. Garvey, E. P.; Johns, B. A.; Gartland, M. J.; Foster, S. A.; Miller, W. H.; Ferris, R. G.;
Hazen, R. J.; Underwood, M. R.; Boros, E. E.; Thompson, J. B.; Weatherhead, J. G.;
Koble, C. S.; Allen, S. H.; Schaller, L. T.; Sherrill, R. G.; Yoshinaga, T.; Kobayashi,
M.; Wakasa-Morimoto, C.; Miki, S.; Nakahara, K.; Noshi, T.; Sato, A.; Fujiwara, T.
Antimicrob. Agents Chemother. 2008, 52, 901.
13. Summa, V. Abstracts of Papers, 232nd ACS National Meeting, San Francisco, CA,
United States, Sept 10–14, 2006; 298.
14. Barnes, M. R.; Harland, L.; Foord, S. M.; Hall, M. D.; Dix, I.; Thomas, S.; Williams-
Jones, B. I.; Brouwer, C. R. Nat. Rev. Drug Disc. 2009, 8, 701.
15. Lengauer, T.; Lemmen, C.; Rarey, M.; Zimmermann, M. Drug Discovery Today
2004, 9, 27.
16. Dayam, R.; Sanchez, T.; Neamati, N. J. Med. Chem. 2005, 48, 8009.
17. Dayam, R.; Sanchez, T.; Clement, O.; Shoemaker, R.; Sei, S.; Neamati, N. J. Med.
Chem. 2005, 48, 111.
18. De Luca, L.; Barreca, M. L.; Ferro, S.; Christ, F.; Iraci, N.; Gitto, R.; Monforte, A.
M.; Debyser, Z.; Chimirri, A. ChemMedChem 2009, 4, 1311.
19. Dayam, R.; Al-Mawsawi, L. Q.; Neamati, N. Bioorg. Med. Chem. Lett. 2007, 17,
6155.
scaffolds. Firstly, the common feature of six clinical candidates
was visualized by generating a pharmacophore model. Secondly,
based on the application of resulting pharmacophore model, eight
compounds with a common 2-pyrrolinones core were selected
from 89 primary hits to be synthesized in a concise strategy. Their
catalytic IN inhibitory activities were tested as well. The com-
pounds 20, 21, and 22 exhibit strand transfer inhibitory activity
with IC50 values of 44, 45, and 40
the best antiviral effect was exhibited by compound 22 with an
EC50 value of 0.317 M. The mapping analysis and the docking
lM, respectively. Furthermore,
l
study showed that the p-methoxylphenyl moiety was well docked
in the vicinity of the aromatic pocket, forming hydrophobic inter-
actions. The analysis is well supported by the biological activities.
These results provide useful information for the design of new po-
tent antiviral agents. Further structural optimization based on this
pharmacophore model and the potent inhibitor structure is in
progress.
Acknowledgments
20. Sato, M.; Motomura, T.; Aramaki, H.; Matsuda, T.; Yamashita, M.; Ito, Y.;
Kawakami, H.; Matsuzaki, Y.; Watanabe, W.; Yamataka, K. J. Med. Chem. 2006,
49, 1506.
21. Boros, E.; Johns, B.; Garvey, E.; Koble, C.; Miller, W. Bioorg. Med. Chem. Lett.
2006, 16, 5668.
22. Di Francesco, M.; Pace, P.; Fiore, F.; Naimo, F.; Bonelli, F.; Rowley, M.; Summa,
V. Bioorg. Med. Chem. Lett. 2008, 18, 2709.
23. Smellie, A.; Teig, S. L.; Towbin, P. J. Comput. Chem. 1995, 16, 171.
24. Hare, S.; Gupta, S. S.; Valkov, E.; Engelman, A.; Cherepanov, P. Nature 2010, 464,
232.
We thank Nouri Neamati, associate professor of University of
Southern California, for performing the biological assays, and
Huifang Liu for the help with the work of pharmacophore modeling
and docking. We gratefully acknowledge Xiaoyan Zhang, professor
of Fudan University, for the antiviral test. We also acknowledge the
financial support from National Drug Innovative Program (Grant
No. 2009ZX09301-011).