10.1002/chem.202004720
Chemistry - A European Journal
COMMUNICATION
Fernández, E. Maçôas, J. M. Cuerva, A. G. Campaña, Angew. Chem.
Int. Ed. 2018, 57, 14782–14786; Angew. Chem. 2018, 130, 14998–
15002.
[10] a) L. Rulíšek, O. Exner, L. Cwiklik, P. Jungwirth, I. Starý, L. Pospíšil, Z.
Havlas, J. Phys. Chem. C 2007, 111, 14948–14955; b) C.-B. Huang, A.
Ciesielski, P. Samorì, Angew. Chem. Int. Ed. 2020, 59, 7319–7330;
Angew. Chem. 2020, 132, 7387–7398.
[11] a) W. H. Laarhoven, Th. J. H. M. Cuppen, R. J. F. Nivard, Tetrahedron
1970, 26, 4865–4881; b) R. G. Harvey, Polycyclic Aromatic
Hydrocarbons, Wiley-VCH, New York, 1997, chap. 6.1.17.
[12] T. A. Manes, M. J. Rose, Inorg. Chem. 2016, 55, 5127–5138.
[13] a) A. Fürstner, V. Mamane, J. Org. Chem. 2002, 67, 6264–6267; b) V.
Mamane, P. Hannen, A. Fürstner, Chem. Eur. J. 2004, 10, 4556–4575;
c) J. Carreras, M. Patil, W. Thiel, M. Alcarazo, J. Am. Chem. Soc. 2012,
134, 16753–16758.
[14] All 1H NMR signals were assigned by the 2D NMR spectra.
[15] Y. Nakai, T. Mori, Y. Inoue, J. Phys. Chem. A 2012, 116, 7372–7385.
[16] a) Y. Zhao, D. G. Truhlar, Chem. Phys. Lett. 2011, 502, 1–13; b) Y. Zhao,
D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157–167. The structure of
[4]HA was optimized by using various functionals and basis sets (Table
S3).
[17] a) S. Toyota, K. Wakamatsu, Bull. Chem. Soc. Jpn. 2020, 93, 65–75; b)
S. Toyota, K. Wakamatsu, T. Kawakami, T. Iwanaga, Bull. Chem. Soc.
Jpn. 2015, 88, 283–291.
[18] HOMA and NICS (nucleus-independent chemical shift) values of the C2
symmetric structures of [4]HA and [5]HA are given in Supporting
Information. We also calculated the structure of [6]HA (Figure S8), where
the number of turns was ca. 1.8 in the C2 symmetric structure.
[19] S. E. Wheeler, K. N. Houk, P. v. R. Schleyer, W. D. Allen, J. Am. Chem.
Soc. 2009, 131, 2547–2560.
[20] a) R. Podeszwa, K. Szalewicz, Phys. Chem. Chem. Phys. 2008, 10,
2735–2746; b) C. Gonzalez, E. C. Lim, J. Phys. Chem. A 2003, 107,
10105–10110.
[21] NCIPLOT4. a) R. A. Boto, F. Peccati, R. Laplaza, C. Quan, A. Carbone,
J.-P. Piquemal, Y. Maday, J. Contreras-García, J. Chem. Theory Comput.
2020, 16, 4150–4158; b) J. Contreras-García, E. R. Johnson, S. Keinan,
R. Chaudret, J.-P. Piquemal, D. N. Beratan, W. Yang, J. Chem. Theory
Comput. 2011, 7, 625–632; c) E. R. Johnson, S. Keinan, P. Mori-
Sánchez, J. Contreras-García, A J. Cohen, W. Yang, J. Am. Chem. Soc.
2010, 132, 6498–6506.
[22] An irregularly large fluorescence quantum yield and
a long-lived
fluorescence of [2]HA cannot be explained from available data and will
be investigated elsewhere.
[23] a) B. Valeur, M. N. Berberan-Santos “Molecular Fluorescence: Principles
and Applications, 2nd ed.” Wiley-VCH, Weinheim, 2012, chap. 6.4; b) S.
Toyota, M. Goichi, M. Kotani, Angew. Chem., Int. Ed. 2004, 43, 2248–
2251; Angew. Chem. 2004, 116, 2298–2301.
[24] a) M. Buchta, J. Rybáček, A. Jančařík, A. A. Kudale, M. Buděšínský, J.
V. Chocholoušová, J. Vacek, L. Bednárová, I. Císařová, G. J. Bodwell, I.
Starý, I. G. Stará, Chem. Eur. J. 2015, 21, 8910–8917; b) Y. Hu, G. M.
Paternò, X.-Y. Wang, X.-C. Wang, M.Guizzardi, Q. Chen, D. Schollmeyer,
X.-Y. Cao, G. Cerullo, F. Scotognella, K. Müllen, A. Narita, J. Am. Chem.
Soc. 2019, 141, 12797–12803.
[25] a) J. Barroso, J. L. Cabellos, S. Pan, F. Murillo, X. Zarate, M. A.
Fernandez-Herrera, G. Merino, Chem. Commun. 2018, 54, 188–191; b)
R. H. Janke, G. Haufe, E.-U. Würthwein, J. H. Borkent, J. Am. Chem.
Soc. 1996, 118, 6031–6035; c) S. Grimme, S. D. Peyerimhoff, Chem.
Phys. 1996, 204, 411–417.
5
This article is protected by copyright. All rights reserved.