1
Table 1 Conformational analysis of nucleoside analogues using H NMR
spectroscopy (in CD3OD)
d, J 7), 6.85 (4 H, d, J 9), 7.21–7.42 (9 H, m), 7.67 (1 H, d, J 7); m/z (FAB)
558 (M + H)+. For 1 (B = U): mp 215–216 °C (AcOEt); [a]D 218.2 (c
17
1.2, acetone); 1H NMR (CD3OD): d 3.74, 3.82 (2 H, AB, J 12), 4.21 (1 H,
dd, J 5, 8), 4.42, 4.82 (2 H, AB, J 8), 5.05 (1 H, d, J 5), 5.66 (1 H, d, J 9),
6.38 (1 H, d, J 8), 7.67 (1 H, d, J 9); Calc. for C10H12N2O6·1/2H2O; C,
45.29; H, 4.94; N, 10.56. Found C, 45.07; H, 4.82; N, 10.15%. For 1 (B =
HO
B
HO
B
O
O
X
OH
Y
Y
C): mp 224–225 °C (PriOH); [a]D +32.6 (c 0.49, H2O); 1H NMR
25
X
OH
(CD3OD): d 3.73, 3.81 (2 H, AB, J 12), 4.16 (1 H, dd, J 5, 7), 4.52, 4.81 (2
H, AB, J 8), 5.04 (1 H, d, J 5), 5.94 (1 H, d, J 8), 6.41 (1 H, d, J 7), 7.68 (1
H, d, J 8); Calc. for C10H13N3O5·1/3H2O; C, 45.98; H, 5.27; N, 16.09.
Found 46.04; H, 5.02; N, 15.82%.
N-conformation
S-confirmation
Nucleoside analogues
J1A2A/Hz
S (%)a
‡ J1A2A Values (6.0 Hz for 6 and 0 Hz for 8) provide the conformational
information.
§
Cambridge Soft Corporation) utilizing the MNDO-PM3 Hamiltonian was
used for the semi-empirical MO calculations. Geometry optimization was
carried out with the use of the keyword MMOK implemented in MOPAC.
All initial structures used for the MO calculation were generated by
reference to the X-ray structures of natural nucleosides (ref. 21). Numerical
calculations were performed on a Power Macintosh computer.
HO
B
O
B = U
B = C
7.5
7.3
94
91
The MOPAC93 molecular orbital package (CS MOPAC ProTM
,
O
OH
HO
HO
B
O
B = U
B = C
4.6
2.8
52
26
OH OH
1 R. Kierzek, L. He and D. H. Turner, Nucleic Acids Res., 1992, 20,
1685.
2 J. P. Dougherty, C. J. Rizzo and R. Breslow, J. Am. Chem. Soc., 1992,
114, 6254.
3 H. Hashimoto and C. Switzer, J. Am. Chem. Soc., 1992, 114, 6255.
4 H. Robinson, K.-E. Jung, C. Switzer and A. H.-J. Wang, J. Am. Chem.
Soc., 1995, 117, 837.
5 V. Lalitha and N. Yathindra, Curr. Sci., 1995, 68, 68.
6 P. A. Giannaris and M. J. Damha, Nucleic Acids Res., 1993, 21,
4742.
B
O
B = U
B = C
1.2b
0c
3
0
OH
Calculated from eqn. (1). Ref. 19 (Measured in [2H6]DMSO). Ref.
20.
a
b
c
7 J. Seki, K. Kuroda, H. Ozaki and H. Sawai, Nucleic Acids Symp. Ser.,
1993, 29, 71.
8 A. Maran, R. K. Maitra, A. Kumar, B. Dong, W. Xiao, G. Li, B. R. G.
Williams, P. F. Torrence and R. H. Silverman, Science, 1995, 265,
789.
C(5′)
9 E. R. Kanimalla, A. Manning, Q. Zhao, D. R. Shaw, R. A. Byrn, V.
Sasisekharan and S. Agrawal, Nucleic Acids Res., 1997, 25, 370.
10 H. C. Schro¨der, R. J. Suhadolnik, W. Pfleiderer, R. Charubala and
W. E. G. Muller, Int. J. Biochem., 1992, 24, 55; G. C. Sen and P.
Lengyei, J. Biol. Chem., 1992, 267, 5017.
C(3′)
C(2′)
C(1′)
C(2)
N(1)
C(4′)
O(4′)
11 C. Horndler and W. Pfleiderer, Helv. Chim. Acta, 1996, 79, 718 and
references cited therein.
12 Some other bicyclic nucleoside analogues have appeared in the
literature. For example, M. Tarkoy and C. Leumann, Angew. Chem., Int.
Ed. Engl., 1996, 35, 1968; R. Zou and M. D. Matteucci, Tetrahedron
Lett., 1996, 37, 941; K.-H. Altmann, R. Imwinkelried, R. Kesselring and
G. Rihs, Tetrahedron Lett., 1994, 35, 7625.
Fig. 1 Computer-generated (PM3) representation of 1 (B = U)
13 S. L. Cook and J. A. Secrist, J. Am. Chem. Soc., 1979, 101, 1554.
14 G. H. Jones, M. Taniguchi, D. Tegg and J. G. Moffatt, J. Org. Chem.,
1979, 44, 1309.
15 S. Obika, Y. Hari, K.-i. Morio, D. Nanbu and T. Imanishi, unpublished
work.
16 T.-S. Lin, M.-Z. Luo, M.-C. Liu, Y.-L. Zhu, E. Gullen, G. E. Dutschman
and Y.-C. Cheng, J. Med. Chem., 1996, 39, 693.
17 C. Altona and M. Sundaralingam, J. Am. Chem. Soc., 1973, 95, 2333;
1972, 94, 8205.
18 J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209, 221.
19 T.-S. Lin, J.-H. Yang, M.-C. Liu, Z.-Y. Shen, Y.-C. Cheng, W. H.
Prusoff, G. I. Birnbaum, J. Giziewicz, I. Ghazzouli, V. Brankovan, J.-S.
Feng and G.-D. Hsiung, J. Med. Chem., 1991, 34, 693.
20 T. L. Sheppard, A. T. Rosenblatt and R. Breslow, J. Org. Chem., 1994,
59, 7243.
tives 1 exist predominantly in an S-conformation, in contrast
with the typical monocyclic nucleoside compounds (Table
1).19,20
Further chemical modification of 1 and its incorporation into
oligonucleotides are now in progress.
Footnotes and References
* E-mail address: imanishi@phs.osaka-u.ac.jp
21
† Selected data for 7: mp 120–121 °C (Et2O–hexane); [a]D 237.7 (c 1.1,
acetone); 1H NMR ([2H6]acetone): d 2.92 (1 H, br s), 3.47, 3.51 (2 H, AB,
J 10), 3.85 (6 H, s), 4.36 (1 H, dd, J 4, 4), 4.52, 4.83 (2 H, AB, J 8), 5.11
(1 H, d, J 4), 5.57 (1 H, d, J 8), 6.51 (1 H, d, J 8), 6.96 (4 H, d, J 9), 7.39–7.41
(7 H, m), 7.52 (2 H, d, J 5), 7.71 (1 H, d, J 9); m/z (EI) 558 (M+). For 11:
22
1
mp 139–140 °C (Et2O–hexane); [a]D + 0.60 (c 0.34, MeOH); H NMR
(CD3OD): d 3.40, 3.50 (2 H, AB, J 10), 3.76 (6 H, s), 4.14 (1 H, dd, J 4, 7),
4.48, 4.72 (2 H, AB, J 7), 4.98 (1 H, d, J 4), 5.79 (1 H, d, J 7), 6.56 (1 H,
21 S. Arnott and W. Hukins, Biochem. J., 1972, 130, 453.
Received in Cambridge, UK, 23rd June 1997; 7/04376G
1644
Chem. Commun., 1997