Full Paper
Synlett 2011, 2053; c) B. Olszewska, B. Kryczka, A. Zawisza, Tetrahedron
Lett. 2012, 53, 6826; d) B. Olszewska, B. Kryczka, A. Zawisza, Tetrahedron
2013, 69, 9551.
at 29.84 or 206.26 ppm; (CD3)2SO at δ = 39.52 ppm]. Data are re-
ported as follows: chemical shift in ppm, coupling constants. Infra-
red (IR) spectra were recorded with a Bruker TENSORTM 27 (IRFT).
Mass spectra with Electronic Impact (MS-EI) were recorded with a
Shimadzu GC–MS-QP2010S Gas Chromatograph/Mass Spectrome-
ter. High-resolution mass spectra (HRMS) were realized at the Labo-
ratoire de Spectrométrie de Masse SM3E de l'Université Pierre et
Marie Curie, Paris. Melting points were determined with a Kofler
bench or a Büchi melting point apparatus in open capillaries.
[13]
For selected examples, see: a) Y. Hirai, M. Nagatsu, Chem. Lett. 1994, 21;
b) Y. Hirai, K. Shibuya, Y. Fukuda, H. Yokoyama, S. Yamagushi, Chem. Lett.
1997, 221; c) Y. Hirai, J. Watanabe, T. Nozaki, H. Yokoyama, S. Yamagushi,
J. Org. Chem. 1997, 62, 776; d) see ref.[11a]; e) H. Yokoyama, K. Otaya, H.
Kobayashi, M. Miyazawa, S. Yamagushi, Y. Hirai, Org. Lett. 2000, 2, 2427;
f) H. Makabe, L. K. Kong, M. Hirota, Org. Lett. 2003, 5, 27; g) H. Yokoyama,
H. Ejiri, M. Miyazawa, S. Yamagushi, Y. Hirai, Tetrahedron: Asymmetry
2007, 18, 852; h) H. Yokoyama, H. Kobayashi, M. Miyazawa, S. Yamagushi,
Y. Hirai, Heterocycles 2007, 74, 283; i) S. M. Hande, N. Kawai, J. Uenishi, J.
Org. Chem. 2009, 74, 244; j) J. Uenishi, Y. S. Vikhe, Heterocycles 2010, 80,
1463; k) Y. Kurogome, M. Kogiso, K. K. Looi, Y. Hattori, H. Konno, M. Hirota,
H. Makabe, Tetrahedron 2013, 69, 8349; l) M. Katsuyama, M. Furuta, K.
Kobayashi, K. Teruya, H. Makabe, K. Akaji, Y. Hattori, Heterocycles 2015,
91, 959.
Supporting Information (see footnote on the first page of this
article): Further details can be found in supporting information.
Acknowledgments
One of us (L. G.) thanks the French Ministère de l'Enseignement
Supérieure et de la Recherche for a grant.
[14]
For selected examples, see: a) C. Welter, A. Dahnz, B. Brunner, S. Streiff,
P. Dübon, G. Helmchen, Org. Lett. 2005, 7, 1239; b) S. Spiess, C. Welter,
G. Franck, J.-P. Taquet, G. Helmchen, Angew. Chem. Int. Ed. 2008, 47, 7652;
Angew. Chem. 2008, 120, 7764; c) C. Gnamm, C. M. Krauter, K. Bröder, G.
Helmchen, Chem. Eur. J. 2009, 15, 2050; d) C. Gnamm, K. Bröder, C. M.
Krauter, G. Helmchen, Chem. Eur. J. 2009, 15, 10514; e) J. F. Teichert, M.
Fañanás-Mastral, B. L. Feringa, Angew. Chem. Int. Ed. 2011, 50, 688;
Angew. Chem. 2011, 123, 714.
For selected examples, see: a) P. Mukherjee, R. A. Widenhoefer, Org. Lett.
2011, 13, 1334; b) J. M. Ketcham, F. S. P. Cardoso, B. Biannic, H. Piras, A.
Aponick, Isr. J. Chem. 2013, 53, 923.
For other metal-catalyzed cyclizations, see: a) K. Namba, Y. Nakagawa, H.
Yamamoto, H. Imagawa, M. Nishizawa, Synlett 2008, 11, 1719; b) D. Jiang,
Z. Xu, Y. Jia, Tetrahedron 2012, 68, 4225; c) T. Seki, S. Tanaka, M. Kimura,
Org. Lett. 2012, 14, 608; d) W. K. Walker, D. L. Anderson, R. W. Stokes, S. J.
Smith, D. J. Michaelis, Org. Lett. 2015, 17, 752.
Keywords: Earth-abundant metals · Iron · Synthetic
methods · Piperidine · Nitrogen heterocycles · Cyclization
[1] a) Alkaloids: Chemical and Biological Perspectives (Ed.: S. W. Pelletier),
Wiley, New York, 1985, vol. 3; b) D. O'Hagan, Nat. Prod. Rep. 2000, 17,
435; c) E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57,
10257.
[2] N. Lindquist, N. Shigematsu, L. Pannell, J. Nat. Prod. 2000, 63, 1290.
[3] P. C. Still, B. Yi, T. F. González-Cestari, L. Pan, R. E. Pavlovicz, H.-B. Chai, N.
Ninh, C. Li, D. D. Soejarto, D. B. McKay, A. D. Kinghorn, J. Nat. Prod. 2013,
76, 243.
[15]
[16]
[4] S. X. Feng, L. D. Lin, H. H. Xu, X. Y. Wei, J. Asian Nat. Prod. Res. 2008, 10,
1155.
[17]
a) A. Guérinot, A. Serra-Muns, C. Gnamm, C. Bensoussan, S. Reymond, J.
Cossy, Org. Lett. 2010, 12, 1808; b) J. Cornil, L. Gonnard, C. Bensoussan,
A. Serra-Muns, C. Gnamm, C. Commandeur, M. Commandeur, S. Rey-
mond, A. Guérinot, J. Cossy, Acc. Chem. Res. 2015, 48, 761.
[5] a) T. Komoto, K. Yano, J. Ono, J. Okawa, T. Nakajima T. Jpn. Kokai
35788(20/02/1986); Chem. Abstr. 1986, 105, 132137w; b) M. Mayer, R.
Thiericke, J. Org. Chem. 1993, 58, 3486; c) S. Grabley, P. Hammann, H.
Kluge, J. Wink, P. Kricke, A. Zeeck, J. Antibiot. 1991, 44, 797.
[6] a) S. Umezawa, T. Tsuchiya, K. Tatsuta, Y. Horiuchi, T. Usui, H. Umezawa,
M. Hamada, A. Yagi, J. Antibiot. 1970, 23, 20; b) S. Umezawa, K. Tatsuta,
Y. Horiuchi, T. Tsuchiya, H. Umezawa, J. Antibiot. 1970, 23, 28.
[7] a) I. Ripoche, J. Gelas, D. Grée, R. Grée, Y. Troin, Tetrahedron Lett. 1995,
36, 6675; b) I. Ripoche, J.-L. Canet, J. Gelas, Y. Troin, Eur. J. Org. Chem.
1999, 1517; c) A. Bariau, J.-P. Roblin, Y. Troin, J.-L. Canet, Synlett 2005,
1731; d) A. Bariau, W. B. Jatoi, P. Calinaud, Y. Troin, J.-L. Canet, Eur. J. Org.
Chem. 2006, 3421.
See ref.[10] and ref.[11a]
[18]
[19]
See the supporting information for the evaluation of some other Lewis
acids in the same transformation.
[20]
[21]
[22]
By working at 0 °C the reaction slowed and, after 10 min, the cyclized
product was isolated in a low yield of 39 %.
The cyclization also proceeded smoothly in TFE (96 %,) whereas a mix-
ture of products was produced in hexafluoroisopropanol.
The use of TFE proved really beneficial and allowed the formation of 2c
in 94 % yield.
[8] I. Williams, K. Reeves, B. M. Kariuki, L. R. Cox, Org. Biomol. Chem. 2007,
5, 3325.
[23]
[24]
[25]
See the experimental details for the synthesis of 1g.
Compound 1g was not soluble in CH2Cl2.
When 3a was treated with InCl3 (5 mol-%) in CH2Cl2 at room temp., after
17 h, a cis/trans ratio of 60:40 was observed, which emphasizes the cru-
cial role of the iron catalyst in the diastereoselectivity of the cyclization
through its ability to induce an epimerization process.
[9] For other cyclizations delivering 2-dienylpiperidines, see: a) Y. Takemoto,
S. Ueda, J. Takeuchi, T. Nakamoto, C. Iwata, Tetrahedron Lett. 1994, 35,
8821; b) J. D. Ha, D. Lee, J. K. Cha, J. Org. Chem. 1997, 62, 4550; c) F. A.
Davis, B. Chao, T. Fang, J. M. Szewczyk, Org. Lett. 2000, 2, 1041.
[10] For examples of Wittig or Horner–Wadsworth–Emmons reactions, see: a)
M. Sabat, C. R. Johnson, Tetrahedron Lett. 2001, 42, 1209; b) P. Celestini,
B. Danieli, G. Lesma, A. Sacchetti, A. Silvani, D. Passarella, A. Virdis, Org.
Lett. 2002, 4, 1367. For examples of Julia reactions, see: c) Y. Doi, M.
Ishibashi, J. Kobayashi, Tetrahedron 1996, 52, 4573; d) Y. Nakatani, J.
Oshita, K. Ishigami, H. Watanabe, T. Kitahara, Tetrahedron 2006, 62, 160;
e) S. Yu, X. Pu, T. Cheng, R. Wang, D. Ma, Org. Lett. 2006, 8, 3179; f) H.
Yokoyama, Y. Hayashi, Y. Nagasawa, H. Ejiri, M. Miyazawa, Y. Hirai, Tetrahe-
dron 2010, 66, 8458; g) C. R. Reddy, B. Latha, K. Warudikar, K. K. Singa-
rapu, Org. Biomol. Chem. 2016, 14, 251. Takai/Suzuki: h) D. Scarpi, O.
Avataneo, C. Prandi, P. Venturello, E. G. Occhiato, Synthesis 2012, 44,
3688.
[26]
[27]
Alkenyl piperidines were obtained from mono-allylic alcohols or acetates
at room temp. in CH2Cl2 in the presence of FeCl3·6H2O (5–10 mol-%) in
61–99 % yield with a dr > 90:10 (see ref.[17]). The lower yields obtained
for the formation of α-dienyl piperidines than for α-alkenyl piperidines
may result from problems of stability of the diene under the reaction
conditions.
During the synthesis of alkenyl piperidines, the formation of a cationic
intermediate was confirmed by using an optically active mono allylic
acetate. A racemic piperidine was isolated and the absence of chirality
transfer supported the hypothetical carbocationic intermediate (see
ref.[17a]).
[11] See also: a) H. Yokoyama, K. Otaya, S. Yamagushi, Y. Hirai, Tetrahedron
Lett. 1998, 39, 5971; b) N. Toyooka, Y. Yotsui, Y. Yoshida, T. Momose, J.
Org. Chem. 1996, 61, 4882; c) D. Ma, H. Sun, J. Org. Chem. 2000, 65, 6009.
[12] For selected examples, see: a) K.-I. Tadano, K.-I. Takao, Y. Nigawara, E.
Nishino, I. Takagi, K. Maeda, S. Ogawa, Synlett 1993, 1993, 565; b) R. W.
Bates, M. R. Dewey, C. H. Tang, S. B. Safii, Y. Hong, J. K. H. Hsieh, P. P. Siah,
[28]
[29]
K. Lafaye, L. Nicolas, A. Guérinot, S. Reymond, J. Cossy, Org. Lett. 2014,
16, 4972.
a) D. M. Knapp, E. P. Gillis, M. D. Burke, J. Am. Chem. Soc. 2009, 131, 6961;
b) C. Souris, F. Frébault, A. Patey, D. Audisio, N. K. Houk, N. Maulide, Org.
Lett. 2013, 15, 3242.
Eur. J. Org. Chem. 2017, 6160–6167
6166
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim