B. Yu et al. / Bioorg. Med. Chem. Lett. 22 (2012) 110–114
113
Table 2
by the Nature Science Foundation of Tianjin, China (Grant ID No.
09JCZDJC21700).
Kinase selectivity for compound 1h
Kinase test
IC50 (nM)
References and notes
VEGFR-2
VEGFR-1
VEGFR-3
5.5
1920
9.6
1355
1. Carmeliet, P.; Jain, R. K. Nature 2000, 407, 249.
2. (a) Folkman, J. Semin. Oncol. 2001, 28, 536; (b) Ferrara, N.; Gerber, H. P.;
LeCouter, J. Nat. Med. 2003, 9, 669.
3. (a) Peruzzi, B.; Bottaro, D. P. Clin. Cancer Res. 2006, 12, 3657; (b) Folkman, J.
Semin. Oncol. 2002, 29, 15; (c) Ferrara, N. Oncologist 2004, 9, 2.
4. (a) Kerbel, R. S. BioEssays 1991, 13, 31; (b) Crawford, J.; Ozer, H.; Stoller, R.;
Johnson, D.; Lyman, G.; Tabbara, I.; Kris, M.; Grous, J.; Picozzi, V.; Rausch, G.;
Smith, R.; Gradishar, W.; Yahanda, A.; Vincent, M.; Stewart, M.; Glaspy, J. N.
Engl. J. Med. 1991, 325, 164.
PDGFR
a
PDGFRb
FGFR1
Tie-2
EGFR
HER2
AKT
CDK1
Aurora A
2788
>10,000
>10,000
>10,000
>10,000
8710
10,000
2680
5. Wassberg, E.; Christofferson, R. Eur. J. Cancer 1997, 33, 2020.
6. (a) Eikesdal, H. P.; Kalluri, R. Semi. Cancer Biol. 2009, 19, 310; (b) Azam, F.;
Mehta, S.; Harris, A. L. Eur. J. Cancer 2010, 46, 1323.
7. (a) Ma, J.; Waxman, D. J. Clin. Cancer Res. 2009, 15, 578; (b) Doloff, J. C.; Khan,
N.; Ma, J.; Demidenko, E.; Swartz, H. M.; Jounaidi, Y. Curr. Cancer Drug Targets
2009, 6, 777.
8. (a) Griffioen, A. W.; Barendsz-Janson, A. F.; Kevin, H. M.; Hillen, H. F. J. Lab. Clin.
Med. 1998, 132, 363; (b) Kaban, K.; Herbst, R. S. Hemato. Oncol. Clin. North Am.
2002, 16, 1125.
9. (a) Galle, P. R. J. Hepatol. 2008, 49, 871; (b) Adnane, L.; Trail, P. A.; Taylor, I.;
Wilhelm, S. M. Methods Enzymol. 2006, 407, 597; (c) Wilhelm, S. M.; Carter, C.;
Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.;
McHugh, M.; Cao, Y.; Shujath, J.; Gawlak, S.; Eveleigh, D.; Rowley, B.; Liu, L.;
Adnane, L.; Lynch, M.; Auclair, D.; Taylor, I.; Gedrich, R.; Voznesensky, A.; Riedl,
B.; Post, L. E.; Bollag, G.; Trail, P. A. Cancer Res. 2004, 64, 7099.
10. (a) Escudier, B.; Eisen, T.; Stadler, W. M.; Szczylik, C.; Oudard, S.; Siebels, M.;
Negrier, S.; Chevreau, C.; Solska, E.; Desai, A. A.; Rolland, F.; Demkow, T.;
Hutson, T. E.; Gore, M.; Freeman, S.; Schwartz, B.; Shan, M.; Simantov, R.;
Bukowski, R. M. N. Engl. J. Med. 2007, 356, 125; (b) Ryan, C. W.; Goldman, B. H.;
Lara, P. N.; Mack, P. C.; Beer, T. M.; Tangen, C. M.; Lemmon, D.; Pan, C. X.;
Drabkin, H. A.; Crawford, E. D. J. Clin. Oncol. 2007, 25, 3296; (c) Abou-Alfa, G. K.;
Schwartz, L.; Ricci, S.; Amadori, D.; Santoro, A.; Figer, A.; De Greve, J.; Douillard,
J. Y.; Lathia, C.; Schwartz, B.; Taylor, I.; Moscovici, M.; Saltz, L. B. J. Clin. Oncol.
2006, 24, 4293; (d) Llovet, J. M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.;
Blanc, J. F.; De Oliveira, A. C.; Santoro, A.; Raoul, J. L.; Forner, A.; Schwartz, M.;
Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T. F.; Galle, P. R.; Seitz, J. F.; Borbath, I.;
Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. N.
Engl. J. Med. 2008, 359, 378.
11. (a) Wong, C. I.; Koh, T. S.; Soo, R.; Hartono, S.; Thng, C. H.; McKeegan, E.; Yong,
W. P.; Chen, C. S.; Lee, S. C.; Wong, J.; Lim, R.; Sukri, N.; Lim, S. E.; Ong, A. B.;
Steinberg, J.; Gupta, N.; Pradhan, R.; Humerickhouse, R.; Goh, B. C. J. Clin. Oncol.
2009, 27, 4718; (b) Jain, L.; Woo, S.; Gardner, E. R.; Dahut, W. L.; Kohn, E. C.;
Kummar, S.; Mould, D. R.; Giaccone, G.; Yarchoan, R.; Venitz, J.; Figg, W. D. Br. J.
Clin. Pharmacol. 2011, 72, 294.
Figure 4. Effect of compound 1h vehicle on tumor growth in xenograft model.
HepG2 human heparcarcinoma cells (1 Â 107 cells) were implanted sc in the flank
of BALB/c-nu mice. Five days after implantation following once daily oral
administration of compound 1h or vehicle. Data points represent mean SE (n = 8).
12. (a) Ederhy, S.; Cohen, A.; Dufaitre, G.; Izzedine, H.; Massard, C.; Meuleman, C.;
Besse, B.; Berthelot, E.; Boccara, F.; Soria, J. C. Target Oncol. 2009, 4, 89; (b)
ODAC Briefing Document Drug Substance Vandetanib (ZD6474) Date 25
October 2010.
low-nanomolar inhibition of VEGFR-2, VEGFR-3. Other kinases
such as VEGFR-1, PDGFRa, PDGFRb, FGFR1, Tie-2, EGFR, HER2,
AKT, CDK1and AuroraA are only weakly inhibited.
13. Melting points were determined in open capillary tubes on a Büchi reference B-
530 digital melting point apparatus and are uncorrected. NMR spectra were
determined on a Bruker AV-400 (400 MHz) spectrometer in DMSO-d6 or in
CDCl3 at ambient temperature. Low resolution mass spectral (MS) data were
determined on an Agilent 1100 Series LC–MS with UV detection at 254 nm and
a low resonance electrospray mode (ESI). Chemical shifts are reported in ppm
from the solvent resonance (DMSO-d6, 2.49 ppm).
Potential lead candidate compound 1h was evaluated in vivo in
the HepG2 cells, a human hepatomacellar carcinoma cell line, as a
xenograft model in BALB/c-nu mice. Following once daily oral
administration of 1h at three doses for 15 days, tumor growth inhi-
bition (%TGI) of 25.6%, 61.4%, 83.6% was achieved at three doses of
20, 50, 100 mg/kg (Fig 4). No adverse events were observed. Oral
administration 1h was found to be well tolerated in the experi-
ment, and the treated animals exhibited no clinically observable
sign of toxicity or weight loss at the highest test dose of 100 mg/
kg. It elicited robust and dose-proportional tumor responses over
the dose range of 20–100 mg/kg in this tumor model.
In summary, we successfully developed a series of 4-anilinoqui-
nazolines derivatives which showed potent, selective inhibition of
the VEGFR-2 kinases. In the quinazoline series, compounds 1h, 1n,
and 1o displayed the most potent cytotoxic activity with IC50 equal
to 5.5, 16, and 17 nmol, respectively. The lead compound, 1h,
exhibited a good kinase selectivity, antiproliferative potency, oral
exposure, and efficacy in tumor xenograft models. The further
development of SAR was underway to found the more potent lead
antitumor drug.
A
typical procedure utilized is demonstrated for compound 1a as
a
representative example. mixture of 4-chloro-7-piperidinemethoxy-
A
quinazoline 100.0 mg (0.344 mmol), 11a 112.8 mg (0.344 mmol), and
isopropanol (15 mL) was stirred at 85 °C for 2 h. The mixture was
concentrated under reduced pressure, diluted with AcOEt and washed with
water, brine, dried over anhydrous magnesium sulfate, and concentrated under
reduced pressure. The residue was purified by basic silica gel column
chromatography to afford of 1a (186.5 mg, yield 93.0%). Compound 1a:1H
NMR (400 MHz, DMSO-d6): d 1.67–1.76 (m, 2H), 1.95–2.08 (m, 3H), 2.67–2.68
(m, 3H), 2.97–3.00 (m, 2H), 3.17 (s, 1H), 3.38–3.41 (m, 2H), 3.73–3.79 (m, 2H),
4.05–4.07 (m, 2H), 7.41–7.48 (m, 4H), 7.61–7.66 (m, 2H), 7.94–8.00(m, 1H),
8.30–8.34 (m, 1H), 8.77 (s, 1H), 9.05–9.07 (m, 1H), 11.42–11.50 (m, 1H), 11.85
(s, 1H). LC–MS (APCI+): m/z 583 (MH+).
Compound 1b: 1H NMR (400 MHz, DMSO-d6): d 1.32–1.35 (m, 2H), 1.74–1.77
(m, 3H), 1.83–1.88 (m, 2H), 2.15 (s, 3H), 2.76–2.79 (m, 2H), 3.66 (s, 2H),3.98–
4.00 (m, 2H), 4.30–4.33 (m, 1H), 7.13–7.14 (m, 1H), 7.20–7.23 (m, 1H), 7.30–
7.32 (m, 2H), 7.64–7.66 (m, 1H), 7.75–7.77 (m, 2H), 7.83–7.86 (m, 1H), 8.19–
8.20 (m, 1H), 8.42–8.47 (m, 2H), 9.62 (s, 1H), 10.58 (s, 1H). LC–MS (APCI+): m/z
499 (MH+).
Compound 1c: 1H NMR (400 MHz, DMSO-d6): d 1.32–1.39 (m, 2H), 1.69–1.77
(m, 4H), 1.86–1.91 (m, 2H), 2.16 (s, 3H), 2.78–2.81 (m, 2H), 3.62 (s, 2H), 3.98–
4.00 (m, 2H), 7.13–7.23 (m, 2H), 7.30–7.38 (m, 3H), 7.74–7.81 (m, 2H), 8.42–
8.47 (m, 2H), 9.61 (s, 1H), 10.37 (s, 1H). LC–MS (APCI+): m/z517 (MH+).
Compound 1d: 1H NMR (400 MHz, DMSO-d6):d1.15–1.20 (m, 2H), 1.22–1.39
(m, 4H), 1.70–1.76 (m, 4H), 1.85–1.90 (m, 1H), 2.16 (s, 3H), 2.78–2.80 (m, 2H),
3.20 (t,2H), 6.54–6.58 (m, 2H), 7.07 (s, 1H), 7.13–7.22 (m, 2H), 7.30–7.33 (m,
Acknowledgments
The authors thank Dr. Meng, F. C. and Dr. He, H. W. for the
molecular biology and in vivo assays. The work was supported