Journal of the American Chemical Society
Page 6 of 8
Int. Ed. 2013, 52, 534. (c) Phipps, R. J.; Hamilton, G. L.; Toste, F.
“Catalytic Asymmetric Mannich Reactions with Fluorinated
Aromatic Ketones: Efficient Access to Chiral β -Fluoroamines”
Angew. Chem. 2016, 128, 791. (e) Cosimi, E., Engl O. D., Saadi, J.,
Ebert, M-O Wennemers, H. “Stereoselective Organocatalyzed
Synthesis of a-Fluorinated β-Amino Thioesters and Their
Application in Peptide Synthesis” Angew. Chem. Int. Ed. 2016, 55,
13127. (f) Mizuta, S. Shibata, S.; Goto, Y.; Furukawa, T.;
Nakamura, S.; and Toru, T. “Cinchona Alkaloid-Catalyzed
Enantioselective Monofluoromethylation Reaction Based on
1
2
3
4
5
6
7
8
D. “The Progression of Chiral Anions from Concepts to
Application in Asymmetric Catalysis” Nat. Chem. 2012, 4, 603.
(13) Handbook of Chemistry and Physics, 85th edition, Lide, D. R., Ed.,
CRC Press, New York, U.S.A., 2004, 12.
(14) For a previous report on the desymmetrization of meso aziridinium
ions with oxygen nucleophiles: Hamilton, G. L.; Kanai, T.; Toste,
F. D. “Chiral Anion-Mediated Asymmetric Ring Opening of meso-
Aziridinium and Episulfonium Ions” J. Am. Chem. Soc. 2008, 130,
14984.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Fluorobis(phenylsulfonyl)methane Chemistry Combined with
a
(15) (a) Morgenthaler, M.; Schweizer, E.; Hoffmann-Roder, F.; Benini,
F.; Martin, R. E.; Jaeschke, G.; Wagner, B.; Fischer, H.; Bendels,
S.; Zimmerli, D.; Schneider, J.; Diederich, F.; Kansy, M.; Muller,
K. “Predicting and Tuning Physicochemical Properties in Lead
Optimization: Amine Basicities” ChemMedChem 2007, 2, 1100. (b)
Briggs, C. R. S.; O'Hagan D.; Howard, J. A. K.; Yufit, D. S. “The
C–F bond as a tool in the conformational control of amides” J.
(19) (a) Fadeyi, O. O.; Lindsley, C. W. “Rapid General Access to Chiral
β-Fluoroamines and β,β-Difluoroamines via Organocatalysis” Org.
Lett. 2009, 11, 943; (b) O’Reilly, M. C.; Lindsley, C. W. “A
general, enantioselective synthesis of β- and γ-fluoroamines”
Toste, F. D. “Asymmetric Fluorination of Enamides: Access to α-
Fluoroimines Using an Anionic Chiral Phase-Transfer Catalyst” J.
(16) For selected examples of drugs containing this motif, see: (a) Sofia,
M. J.; Bao, D.; Chang, W.; Du, J.; Nagarathnam, D.; Rachakonda,
S.; Reddy, P. G.; Ross, B. S.; Wang, P.; Zhang, H.–R.; Bansal, S.;
Espiritu, C.; Keilman, M.; Lam, A.M.; Micolochick Steuer, H. M.;
Niu, C.; Otto, M. J.; Furman P. A. “Discovery of a β-D-20-Deoxy-
20-r-fluoro-20-β-C-methyluridine Nucleotide Prodrug (PSI-7977)
for the Treatment of Hepatitis C Virus” J. Med. Chem. 2010, 53,
7202. (b) Sato, K.; Hoshino, K.; Tanaka, M.; Hayakawa, I.; Osada,
(20) (a) Lu, D. –F.; Zhu, C. –L.; Sears, J. D.; Xu, H., “Iron(II)-Catalyzed
Intramolecular Olefin Aminofluorination” J. Am. Chem. Soc. 2016,
138, 11360. For approaches based on hypervalent iodine
reagents/catalysts in combination with HF sources, see: (b) Suzuki,
S.; Kamo, T.; Fukushi, K.; Hiramatsu, T.; Tokunaga, E.; Dohi, T.;
Kita, Y.; Shibata, N. “Iodoarene-catalyzed fluorination and
aminofluorination by an Ar–I/HF·pyridine/mCPBA system” Chem.
Sci. 2014, 5, 2754. (c) Mennie, K. M.; Banik, S. M.; Reichert, E.
C.; Jacobsen, E. N. “Catalytic Diastereo- and Enantioselective
(d) Kong, W.; Feige, P.; De Haro, T.; Nevado, C. Angew. Chem.
Int. Ed. 2013, 52, 2469. For approaches that generate HF in situ, see
reference 5f.
Y.; “Antimicrobial Activity of DU-6859,
a New Potent
Fluoroquinolone, against Clinical Isolates” Antimicrob. Agents
Chemother. 1992, 36, 1491. (f) Murray, T. K.; Whalley, K.;
Robinson, C. S.; Ward, M. A.; Hicks, C. A.; Lodge, D.;
Vandergriff, J. L.; Baumbarger, P.; Siuda, E.; Gates, M.; Ogden, A.
M.; Skolnick, P.; Zimmerman, D. M.; Nisenbaum, E. S.; Bleakman,
D.; O'Neill, M. J. “LY503430, a Novel α-Amino-3-hydroxy-5-
methylisoxazole-4- propionic Acid Receptor Potentiator with
Functional, Neuroprotective and Neurotrophic Effects in Rodent
Models of Parkinson’s Disease” J. Pharmacol. Exp. Ther. 2003,
306, 752.
(21) Duthion, B.; Pardo, D. G.; Cossy, J. “Enantioselective Synthesis of
β-Fluoroamines from β-Amino Alcohols: Application to the
(22) Janiri, L.; Persico, M. A.; Tempesta, E. “Dual effect of
Lephetamine on spontaneous and evoked neuronal firing in the
somatosensory cortex of the rat” Neuropharmacology, 1989, 28,
1405.
(17) Aufiero, M.; Gilmour, R. “Informing Molecular Design by
Stereoelectronic Theory: The Fluorine Gauche Effect in Catalysis”
(23) Vitaku, E.; Smith, D. T.; Njardarson J. T. “Analysis of the
Structural Diversity, Substitution Patterns, and Frequency of
(18) (a) Guan, Y.; Han, Z.; Li, X.; You, C.; Tan, X.; Lv, H.; Zhang, X.
“A cheap metal for a challenging task: nickel- catalyzed highly
diastereo- and enantioselective hydrogenation of tetrasubstituted
fluorinated enamides” Chem. Sci. 2019, 10, 252. (b) Vara, B. A.;
Johnston, J. N. “Enantioselective Synthesis of β-Fluoro Amines via
β-Amino α-Fluoro Nitroalkanes and a Traceless Activating Group
V.; Kim, J.; Liu, Y.; Yan, H; Song, C. S. “Direct Access to Chiral
β-Fluoroamines with Quaternary Stereogenic Center through
Cooperative Cation-Binding Catalysis” Chem. Eur. J. 2017, 23,
1268. (d) Trost, B. M.; Saget, T.; Lerchen, A.; Hung, C. J.
Nitrogen
Heterocycles
among
U.S.
FDA
Approved
(24) (a) Natsuka, K; Nakamura, H. Negoro, T.; Hitoshi, U.; Nishimura,
H. “Studies on 1-Substituted 4-(l,2-Diphenylethyl)piperazine
Derivatives and their analgesic activities. Structure-Activity
relationships of l-Cycloalkyl-4-(l,2-diphenylethyl)piperazines” J.
Med. Chem. 1978, 21, 1265; (b) Sahai, M. A.; Davidson, C.; Dutta,
N.; Opacka-Juffry, J. “Mechanistic Insights into the Stimulant
Properties of Novel Psychoactive Substances (Nps) and Their
Discrimination by the Dopamine Transporter—in Silico and in
ACS Paragon Plus Environment