3818 J ournal of Medicinal Chemistry, 1997, Vol. 40, No. 23
J ohansson et al.
(5) (a) Chadwick, D. J .; Chambers, J .; Meakins, G. D.; Snowden,R.
L. Esters of Furan-, Thiophen-, and N-Methylpyrrole-2-carbox-
ylic Acids. Bromination of Methyl Furan-2-carboxylate, Furan-
2-carbaldehyde, and Thiophen-2-carbaldehyde in the presence
of Aluminium Chloride. J . Chem. Soc., Perkin Trans. 1 1973,
1766-1773. (b) Petfield, R. J .; Amstutz, E. D. Halogen Reac-
tivities. VI. The Reactions of Several R-Bromofurans. The
Isolation of 2-Methoxyfuran. J . Org. Chem. 1954, 19, 1944-1946.
(6) Nazarova, Z. N.; Gakh, I. G. Some derivatives of 5-halofuran-
carboxylic acids. Zh. Obshch. Khim. 1960, 30, 2322-2326; Chem.
Abstr. 1961, 55, 8376f.
of Substituted Cyclobutenediones and Cyclobutenedione Monoac-
etals and the Beneficial Effect of Catalytic Copper Iodide on the
Stille Reaction. J . Org. Chem. 1990, 55, 5359-5364. (b) Farina,
V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. On
the Nature of the Copper Effect in the Stille Cross-Coupling. J .
Org. Chem. 1994, 59, 5905-5911. (c) J ohnson, C. R.; Adams, J .
P.; Braun, M. P.; Senanayake, C. B. Modified Stille Coupling
Utilizing R-Iodoenones. Tetrahedron Lett. 1992, 919-922. (d) Ye,
J .; Bhatt, R.; Falck, J . R. Stereospecific Palladium/Copper
Cocatalyzed Cross-Coupling of R-Aminostannanes with Acyl
Chlorides. J . Am. Chem. Soc. 1994, 116, 1-5. (e) Gibbs, R. A.;
Krishnan, U.; Dolence, J . M.; Poulter, C. D. A stereoselective
Palladium/Copper-Catalyzed Route to Isoprenoids: Synthesis
and Biological Evaluation of 13-Methylidenefarnesyl Diphos-
phate. J . Org. Chem. 1995, 60, 7821-7829.
(7) Williard, J . R.; Hamilton, C. S. Studies in the Furan Series.
Chloralfuranamides and Some of Their Reactions. J . Am. Chem.
Soc. 1953, 75, 2370-2373.
(8) Grigg, R.; Knight, J . A.; Sargent, M. V. Studies in Furan
Chemistry. Part I. The Infrared Spectra of 2,5-Disubstituted
Furans. J . Chem. Soc. 1965, 6057-6060.
(27) See, for examples: (a) Hedberg, M. H.; J ohansson, A. M.;
Nordvall, G.; Yliniemela¨, A.; Li, H. B.; Martin, A. R.; Hjorth, S.;
Unelius, L.; Sundell, S.; Hacksell, U. (R)-11-Hydroxy- and (R)-
11-Hydroxy-10-methylaporphine: Synthesis, Pharmacology, and
Modeling of D2A and 5-HT1A Receptor Interactions. J . Med.
Chem. 1995, 38, 647-658. (b) Cacchi, S.; Cianttini, P. G.; Morera,
E.; Ortar, G. Palladium-Catalyzed Triethylammonium Formate
Reduction of Aryltriflates. A Selective Method for the Deoxy-
genation of Phenols. Tetrahedron Lett. 1986, 27, 5541-5544.
(28) Crossland, K.; Servis, K. L. A Facile Synthesis of Methane-
sulfonate Esters. J . Org. Chem. 1970, 35, 3195-3196.
(29) Mohamadi, F.; Richards, N. G. J .; Guida, W. C.; Liskamp, R.;
Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W.
C. Macromodel - An Integrated Software System for Modeling
Organic and Bioorganic Molecules Using Molecular Mechanics.
J . Comput. Chem. 1990, 11, 440-467.
(30) Nilvebrant, L.; Sparf, B. Muscarinic Receptor Binding in the
Parotid Gland. Different Affinities of Some Anticholinergic Drugs
Between the Parotid Gland and Ileum. Scand. J . Gastroenterol.
1982, 17 (Suppl. 72), 69-77.
(31) Nilvebrant, L.; Sparf, B. Muscarinic Receptor Binding in the
Guinea Pig Urinary Bladder. Acta Pharmacol. Toxicol. 1983, 52,
30-38.
(32) Nilvebrant, L.; Sparf, B. Dicyclomine, Benzhexol and Oxybutynin
Distinguish Between Sub-Classes of Muscarinic Binding-sites.
Eur. J . Pharmacol. 1986, 123, 133-143.
(33) Nilvebrant, L.; Sparf, B. Differences Between Binding Affinities
of Some Antimuscarinic Drugs in the Parotid Gland and those
in the Urinary Bladder and Ileum. Acta Pharmacol. Toxicol.
1983, 53, 304-313.
(34) Wolfe, B. B.; Yasuda, R. P. Development of Selective Antisera
for Muscarinic Cholinergic Receptor Subtypes. Ann. N.Y. Acad.
Sci. 1995, 151, 186-193.
(35) Levey, A. I.; Kitt, C. H.; Simmonds, W. F.; Price, D. L.; Brann,
M. R. Identification and Localisation of Muscarinic Acetylcholine
Receptor Proteins with Subtype-specific Antibodies. J . Neurosci.
1991, 11, 3218-3226.
(36) Peralta, E. G.; Ashkenazi, A.; Winslow, J . W.; Smith, D. H.;
Ramachandran, J .; Capon, D. J . Distinct Primary Structure,
Ligand-Binding Properties and Tissue-Specific Expression of
Four Human Muscarinic Acetylcholine Receptors. EMBO J .
1987, 6, 3923-3929.
(37) Do¨rje, F.; Levey, A. I.; Brann, M. R. Immunological Detection of
Muscarinic Receptor Subtype Proteins (m1-m5) in Rabbit Pe-
ripheral Tissues. Mol. Pharmacol. 1991, 40, 459-462.
(38) Dai, Y.; Ambukar, I. S.; Horn, V. J .; Yeh, C.-K.; Kousvelari, E.
E.; Wall, S. E.; Li, M.; Yasuda, R. P.; Wolfe, B. B.; Baum, B. J .
Evidence that M3 Muscarinic Receptors in Rat Parotid Gland
Couple to Two Second Messenger Systems. Am. J . Physiol. 1991,
261, c1063-c1073.
(39) Wang, P.; Luthin, G. R.; Ruggieri, M. R. Muscarinic Acetylcholine
Receptor Subtypes Mediating Urinary Bladder Contractility and
Coupling to GTP Binding Proteins. J . Pharmacol. Exp. Ther.
1995, 273, 959-966.
(40) Wold, S.; Albano, C.; Dunn, W. J ., III; Edlund, U.; Esbensen,
K.; Geladi, P.; Hellberg, S.; J ohansson, E.; Lindberg, W.;
Sjo¨stro¨m, M. In Chemometrics-Mathematics and Statistics in
Chemistry; Kowalski, B. R., Ed.; Reidel: Dordrecht, 1984; pp
17-95.
(9) Knight, D. W.; Nott, A. P. The Generation and Chemistry of
Dianions derived from Furancarboxylic Acids. J . Chem. Soc.,
Perkin Trans. 1 1981, 1125-1131.
(10) For examples of using dibromotetrafluoroethane as electrophile,
see: (a) Talham, D. R.; Cowan, D. O. Synthesis of New Bifer-
rocene Derivatives Containig Interannular Bridges and Their
Mixed-Valence Analogues. Organometallics 1987, 6, 932-937.
(b) Akabori, S.; Habata, Y.; Sato, M. Electron-Transfer Interac-
tion between the Complexed Silver(I) Cation and Ruthenium
Atom in Polyoxa[n]- and 1,n-Dioxathia[n]Ruthenoceophanes.
Chem. Lett. 1985, 7, 1063-1066. (c) Finkelstein, B. L. Regiose-
lective Lithiation and Reaction of [1,2,4]Triazolo[1,5-a]pyridine
and Pyrazolo[1,5a]pyridine. J . Org. Chem. 1992, 57, 5538-5540.
(11) See, for example: (a) Luthman, K.; Orbe, M.; Wa˚glund, T.;
Claesson, A. Synthesis of C-Glycosides of 3-Deoxy-D-manno-2-
octulosonic Acid. Stereoselectivity in an Enolate Reaction. J . Org.
Chem. 1987, 52, 3777-3784. (b) Dijkstra, G.; Kruizinga, W. H.;
Kellogg, R. M. An Assessment of the Causes of the “Cesium
Effect”. J . Org. Chem. 1987, 52, 4230-4234.
(12) For a review, see: Gschwend, H. W.; Rodriguez, H. R. Hetero-
atom-Faciliated Lithiations Org. React. 1979, 26, 1-360.
(13) Burgess, E. M.; Penton, H. R.; Taylor, E. A. Thermal Reactions
of Alkyl N-Carbomethoxysulfamate Esters. J . Org. Chem. 1973,
38, 26-31.
(14) Dinh Ly, N.; Schlosser, M. 208. A simple synthesis of rose furan
and related compounds. Helv. Chim. Acta 1977, 60, 2085-2088.
(15) Bock, I.; Bornovski, H.; Ranft, A.; Theis, H. New Aspects in the
Synthesis of Mono- and Dialkylfurans Tetrahedron 1990, 46,
1199-1210.
(16) Zaluski, M. C.; Robba, M.; Bonhomme, M. No 314.-Synthesis of
furan dicarbonyl derivatives. II. Preparation by Organolithium
Intermediates. Bull. Soc. Chim. Fr. 1970, 1838-1846.
(17) Cabri, W.; Candiani, I.; Bedeschi, A.; Penco, S. R-Regioselectivity
in Palladium-Catalyzed Arylation of Acyclic Enol Ethers. J . Org.
Chem. 1992, 57, 1481-1486.
(18) Nordvall, G.; Sundquist, S.; Nilvebrant, L.; Hacksell, U. 3-Lithio-
quinuclidin-2-ene: A Novel Intermediate for the Synthesis of
Muscarinic Agonists and Antagonists. Bioorg. Med. Chem. Lett.
1994, 4, 2837-2840.
(19) Malm, J .; Bjo¨rk, P.; Gronowitz, S.; Ho¨rnfeldt, A.-B. Palladium-
Catalyzed Coupling of HeteroarylAlkylstannanes with Het-
eroaryl Halides in the Presence of Silver(I)oxide. Tetrahedron
Lett. 1992, 33, 2199-2202.
(20) Gronowitz, S.; Bjo¨rk, P.; Malm, J .; Ho¨rnfeldt, A.-B. The effect
of Some additives on the Stille Pd0-catalyzed cross-coupling
reaction. J . Organomet. Chem. 1993, 460, 127-129.
(21) Davies, S. G.; Pyatt, D. Synthesis of 1-Substituted Derivatives
of Codeine from 1-Bromocodeine via Palladium Catalysed Cou-
pling Reactions. Heterocycles 1989, 28, 163-166.
(22) Peters, D.; Ho¨rnfeldt, A.-B.; Gronowitz, S.; J ohansson, N.-G.
Synthesis of Various 5-Substituted 2’-deoxy-3′,5′-di-O-acetyl-
uridines. J . Hetereocycl. Chem. 1991, 28, 529-531.
(23) Saunders, J .; Cassidy, M.; Freedman, S. B.; Harley, E. A.;
Iversen, L. L.; Kneen, C.; MacLeod, A. M.; Merchant, K. J .; Snow,
R. J .; Baker, R. Novel Quinuclidine-Based Ligands for the
Muscarinic Cholinergic Receptor. J . Med. Chem. 1990, 33, 1128-
1138.
(24) See, for example: Kosugi, M.; Suyima, T.; Obara, Y.; Suzuki,
M.; Sano, H.; Migita, T. (R-Ethoxyvinyl)tributyltin; An Efficient
Reagent for the Nucleophilic Acetylation of Organic Halides via
Palladium Catalysis. Bull. Chem. Soc. J pn. 1987, 60, 767-768
and references cited therein.
(41) The PLS equation for the model is pK
0.17572π - 0.82443MR - 0.84142σ(para).
i(cortex) ) 15.200 -
(42) The PLS equation for the model is pKi(cortex) ) 6.3938 -
0.17612π - 1.0582MR - 0.77751σ(para).
(43) In order to explore this possibility, we docked 68 into a homology-
based model of the muscarinic m1 receptor (see ref 44). During
the docking the protonated quinuclidin-2-ene nitrogen was kept
interacting via a hydrogen bond reinforced ionic interaction with
Asp105 in transmembrane region (TM) 3. The 3-phenyl group
(25) For examples of in situ palladium-catalyzed Suzuki reactions,
see: (a) Cristofoli, W. A.; Keay, B. A. A Palladium Catalyzed
Cross-Coupling Between Furylborates (Generated in situ) and
Organohalides. Tetrahedron Lett. 1991, 32, 5881-5884. (b)
Maddaford, S. P.; Keay, B. A. Scope and Limitations of the
Palladium-Catayzed Cross-Coupling Reactions of in situ Gener-
ated Organoboranes with Aryl and Vinyl Halides. J . Org. Chem.
1994, 59, 6501-6503.
could interact with Trp164. We also identified
hydrogen bond interaction with Ser388 in TM6. This is
a possible
a
variable residue between the subtypes (Ser in m1 and m5, Asn
in m2, m3 and m4). The lack of subtype selectivity exhibited by
68 may be rationalized as both serine and aspargine residues
can accept and donate hydrogen bonds to the ligand.
(26) For examples of the beneficial effect of CuI on the Stille reaction,
see: (a) Liebeskind, L. S.; Fengl, R. W. 3-Stannylcyclobutene-
diones as Nucleophilic Cyclobutenediones Equivalents. Synthesis