11544
J. Am. Chem. Soc. 1997, 119, 11544-11545
Facile Activation of Carbon-Fluorine Bonds in
Saturated Fluoroalkyl Ligands by Coordinated
Water in Fluoroalkyl Aqua Complexes of Rhodium
Russell P. Hughes* and Danielle C. Lindner
Department of Chemistry, 6128 Burke Laboratory
Dartmouth College, HanoVer, New Hampshire 03755
Arnold L. Rheingold and Louise M. Liable-Sands
Department of Chemistry, UniVersity of Delaware
Newark, Delaware 19716
ReceiVed July 14, 1997
Figure 1. Molecular structure of 3; fluorines are shown as spheres
for clarity. A full ORTEP appears in the Supporting Information.
Selected bond distances (Å) and angles (deg): Rh-O, 2.164(7); Rh-
P, 2.338(2); Rh-C(17), 2.113(9); C(17)-F(7), 1.388(10); C(17)-F(6),
1.412(10); F(7)-C(17)-F(6), 101.8(6); C(17)-Rh-O, 89.5(3); O-Rh-
P, 90.4(2); C(17)-Rh-P, 88.1(2).
Activation of normally inert carbon-fluorine bonds in
saturated fluorocarbons is a topic of considerable recent interest.1
The methodology of choice usually involves strongly reducing
conditions; the fate of the fluorine is usually fluoride ion,
stabilized as an alkali metal salt. An alternative method for
activation of CF2 groups is hydrolysis, with strong HsF and
CdO bonds providing driving force for the reaction. However,
conditions necessary to hydrolyze a CF2 group in saturated
fluorocarbons often require a combination of strong bases or
acids, heat, and long reaction times, depending on the position
of the hydrolyzable group in the molecule.2 Hydrolysis of CF2
or CF3 groups bound to transition metal centers is sometimes
more facile, but initial activation of an R-CsF bond still requires
a strong Lewis acid, such as BF3,3 SbF5,4 or SiMe3+,5 although
there are some indications that a proton can act as the initial
fluoride acceptor.6 We have reported remarkably facile hy-
drolysis of a RhsCF2 group in a coordinatively unsaturated
perfluorometallacyclobutene complex by traces of moisture
present on glassware surfaces; a coordinatively saturated
analogue was inert, leading to the hypothesis that the vacant
coordination site on the metal could bind and activate water in
the hydrolysis mechanism.7 Here, we describe the synthesis
and structures of two cationic complexes containing adjacent
fluoroalkyl and water ligands, both of which undergo hydrolysis
of a CF2 group, the facility of which depends strongly on the
hydrogen-bonding ability of the counterion.
Figure 2. Molecular structure of 4; fluorines are shown as spheres
for clarity. A full ORTEP appears in the Supporting Information.
Selected bond distances (Å) and angles (deg): Rh-O, 2.219(5); Rh-
P, 2.319(2); Rh-C(11), 2.086(7); C(11)-F(1), 1.396(8); C(11)-F(2),
1.389(8); F(1)-C(11)-F(2), 102.1(6); C(11)-Rh-O, 85.2(3); O-Rh-
P, 85.8(2); C(11)-Rh-P, 92.8(2).
Addition of perfluorobenzyl complex 18 or perfluoropropyl
water molecule with the tetrafluoroborate counterion, with
OsF(9A) and OsF(11) distances of 2.640 and 2.855 Å in 3,
and 2.723 and 2.636 Å in 4; such interactions are well
precedented.11 Close approaches of OsF(1) [2.749 Å] in 3 and
OsF(2) [2.767 Å] in 4 are also well within potential hydrogen-
bonding distance.
-
analogue 29 to AgBF4 in moist CH2Cl2 affords BF4 salts of
the cationic aqua complexes 3 and 4,9 the structures of which
were confirmed by X-ray crystallographic studies.10 ORTEP
diagrams for the two ion pairs, with selected bond distances
and angles, are presented in Figures 1 and 2. Each molecule
exhibits close hydrogen-bonding interactions of coordinated
Solution spectra of 3 are consistent with the solid state
structure. Asymmetric and symmetric stretches of coordinated
(1) For leading recent references, see: Kiplinger, J. L.; Richmond, T.
G. J. Am. Chem. Soc. 1996, 118, 1805. Burdeniuc, J.; Chupka, W.; Crabtree,
R. H. J. Am. Chem. Soc. 1996, 118, 2525. Burdeniuc, J.; Jedlicka, B.;
Crabtree, R. H. Chem. Ber. (Recueil) 1997, 130, 145. Saunders, G. C.
Angew. Chem., Int. Ed. Engl. 1996, 35, 2615.
(10) Crystal data for 3: C20H26BF11OPRh, red block, triclinic, P1h, a )
8.682(3), b ) 11.033(2), and c ) 14.376(3) Å, R ) 74.50(1), â ) 76.11-
(3), and γ ) 73.02(3)°, V ) 1249.4(7) Å3, Z ) 2, Dx ) 1.691 g cm-3, T
) 298 K, R(F) ) 6.74%, R(wF2) ) 19.49%. Crystal data for 4: C16H26-
BF11OPRh, orange block, monoclinic, P21/n, a ) 10.115(1), b ) 16.270-
(2), and c ) 14.070(2) Å, â ) 92.74(1)°, V ) 2312.7(7) Å3, Z ) 4, Dx )
1.689 g cm-3, T ) 298 K, R(F) ) 4.81%, R(wF2) ) 8.41%. Details of the
crystallographic determinations are provided in the Supporting Information.
(11) For a compilation of some crystallographically characterized orga-
nometallic complexes containing water ligands and a discussion of hydrogen-
bonding to counterions, see: Kubas, G. J.; Burns, C. J.; Khalsa, G. R. K.;
Van Der Sluys, L. S.; Kess, G.; Hoff, C. D. Organometallics 1992, 11,
3390. For other more recent references, see: Veltheer, J. E.; Burger, P.;
Bergman, R. G. J. Am. Chem. Soc. 1995, 117, 12478. Canty, A. J.; Jin, H.;
Skelton, B. W.; White, A. H. J. Organomet. Chem. 1995, 503, C16. Bodige,
S.; Porter, L. C. J. Organomet. Chem. 1995, 487, 1. Dadci, L.; Elias, H.;
Frey, U.; Ho¨rnig, A.; Koelle, U.; Merbach, A. E.; Paulus, H.; Schneider, J.
S. Inorg. Chem. 1995, 34, 306. Carmona, D.; Cativiela, C.; Garc´ıa-Correas,
R.; Lahoz, F. J.; Lamata, M. P.; Lo´pez, J. A.; Lo´pez-Ram de V´ıu, M. P.;
Oro, L. A.; San Jose´, E.; Viguri, F. J. Chem. Soc., Chem. Commun. 1996,
1247. Fries, A.; Green, M.; Mahon, M. F.; McGrath, T. D.; Nation, C. B.
M.; Walker, A. P.; Woolhouse, C. M. J. Chem. Soc., Dalton Trans. 1996,
4517.
(2) See: Chemistry of Organic Fluorine Compounds II; Hudlicky, M.,
Pavlath, A. E., Eds.; ACS Monograph 187; American Chemical Society:
Washington, DC, 1995; Chapter 4. Chemistry of Organic Fluorine
Compounds, 2nd ed.; Hudlicky, M., Ed.; John Wiley & Sons: New York,
NY, 1976; Chapter 5. Chemistry of Organic Fluorine Compounds; Hudlicky,
M., Ed.; Macmillan; New York, 1962.
(3) Richmond, T. G.; Crespi, A. M.; Shriver, D. F. Organometallics 1984,
3, 314.
(4) Reger, D. L.; Dukes, M. D. J. Organomet. Chem. 1978, 153, 67.
(5) Koola, J. D.; Roddick, D. M. Organometallics 1981, 10, 591.
(6) Clark, B. R.; Hoskins, S. V.; Roper, W. R. J. Organomet. Chem.
1982, 234, C9. Appleton, T. G.; Berry, R. D.; Hall, J. R.; Neale, D. W. J.
Organomet. Chem. 1989, 364, 249. Burrell, A. K.; Clark, G. R.; Rickard,
C. E. F.; Roper, W. R. J. Organomet. Chem. 1994, 482, 261.
(7) Hughes, R. P.; Rose, P. R.; Rheingold, A. L. Organometallics 1993,
12, 3109.
(8) Hughes, R. P.; Lindner, D. C.; Rheingold, A. L.; Yap, G. P. A.
Organometallics 1996, 15, 5678.
(9) Experimental details and spectroscopic data for this compound are
provided in the Supporting Information.
S0002-7863(97)02338-X CCC: $14.00 © 1997 American Chemical Society