A R T I C L E S
Kim et al.
Scheme 2. Retrosynthetic Plan for (+)-3-(Z)-Isolaureatin (1) and
(+)-3-(Z)-Laureatin (2)
(Z)-isolaureatin (1) and (+)-3-(Z)-laureatin (2), featuring an
intramolecular amide enolate alkylation (IAEA) to construct the
R,R′-cis-oxocene, novel “lone pair-lone pair interaction-
controlled” epimerizations to the R,R′-trans-oxocenes, various
strategies for stereoselective introduction of halogen atoms, and
novel olefin cross-metatheses for construction of the (Z)-enyne
systems as key transformations.
Results and Discussion
Our retrosynthetic plan, which includes a multitude of
halogenation steps, is shown in Scheme 2. We envisioned that
the two R,R′-trans-oxocene natural products,8 (+)-3-(Z)-iso-
laureatin (1) and (+)-3-(Z)-laureatin (2), could be elaborated
from R,R′-cis-oxolane 5 and R,R′-cis-oxetane 6, respectively,
by a novel “lone pair-lone pair interaction-controlled” isomer-
ization (vide infra). We further envisaged that chloro diol 7 could
serve as a common intermediate for the regioselective construc-
tion of the oxolane and oxetane rings present in these natural
products by an internal Williamson ether synthesis. It should
be emphasized that our R,R′-cis-oxocene-based strategy pos-
sesses a definite advantage, in particular, for synthesis of
Williamson substrate 7 (vide infra). Exploration of a direct route
to these natural products by way of a bromoetherification was
unsuccessful in our hands, probably due to the aforementioned
transannular participation of the oxocene ring oxygen atom.4
The requisite R,R′-cis-oxocene 8 in turn could be secured by
our intramolecular amide enolate alkylation7k,l of chloro amide
9. Further analysis indicated internal alkylation substrate 9 could
be prepared from the known glycolate oxazolidinone 10 and
allylic iodide 11 based on Evans methodology.10
(6) (a) Edwards, S. D.; Lewis, T.; Taylor, R. J. K. Tetrahedron Lett. 1999, 40,
4267. (b) Taylor, C. D.; Castillo, B. F., II; Howell, A. R. Abstracts of
Papers, 232nd National Meeting of the American Chemical Society, San
Francisco, CA, Sept 10-14, 2006; American Chemical Society: Wash-
ington, DC, 2006; ORGN-711. (c) Note added in proof: during the process
of publishing this article, Suzuki and coworkers reported a total synthesis
of (+)-3-(Z)-laureatin: Sugimoto, M.; Suzuki, T.; Hagiwara, H.; Hosi, T.
Tetrahedron Lett. 2007, 48, 1109.
(7) For total syntheses of R,R′-cis-oxocene Laurencia natural products, see:
(a) Murai, A.; Murase, H.; Matsue, H.; Masamune, T. Tetrahedron Lett.
1977, 2507. (b) Overman, L. E.; Thompson, A. S. J. Am. Chem. Soc. 1988,
110, 2248. (c) Tsushima, K.; Murai, A. Tetrahedron Lett. 1992, 33, 4345.
(d) Bratz, M.; Bullock, W. H.; Overman, L. E.; Takemoto, T. J. Am. Chem.
Soc. 1995, 117, 5958. (e) Mujica, M. T.; Afonso, M. M.; Galindo, A.;
Palenzuela, J. A. Synlett 1996, 983. (f) Burton, J. W.; Clark, J. S.; Derrer,
S.; Stork, T. C.; Bendall, J. G.; Holmes, A. B. J. Am. Chem. Soc. 1997,
119, 7483. (g) Kru¨ger, J.; Hoffmann, R. W. J. Am. Chem. Soc. 1997, 119,
7499. (h) Crimmins, M. T.; Emmitte, K. A. Org. Lett. 1999, 1, 2029. (i)
Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5653. (j)
Boeckman, R. K., Jr.; Zhang, J.; Reeder, M. R. Org. Lett. 2002, 4, 3891.
(k) Kim, H.; Choi, W. J.; Jung, J.; Kim, S.; Kim, D. J. Am. Chem. Soc.
2003, 125, 10238. (l) Baek, S.; Jo, H.; Kim, H.; Kim, H.; Kim, S.; Kim,
D. Org. Lett. 2005, 7, 75. (m) Fujiwara, K.; Yoshimoto, S.; Takizawa, A.;
Souma, S.; Mishima, H.; Murai, A.; Kawai, H.; Suzuki, T. Tetrahedron
Lett. 2005, 46, 6819.
(8) For total synthesis of R,R′-trans-oxocene Laurencia natural products, see:
(a) Crimmins, M. T.; Tabet, E. A. J. Am. Chem. Soc. 2000, 122, 5473. (b)
Fujiwara, K.; Souma, S.; Mishima, H.; Murai, A. Synlett 2002, 1493. (c)
Saitoh, T.; Suzuki, T.; Sugimoto, M.; Hagiwara, H.; Hoshi, T. Tetrahedron
Lett. 2003, 44, 3175.
(9) For recent examples of C-C bond forming approaches to oxocene
construction, see: (a) Suh, Y.-G.; Koo, B.-A.; Kim, E.-N.; Choi, N.-S.
Tetrahedron Lett. 1995, 36, 2089. (b) Alvarez, E.; Delgado, M.; Diaz,
M. T.; Hanxing, L.; Perez, R.; Mart´ın, J. D. Tetrahedron Lett. 1996, 37,
2865. (c) Linderman, R. J.; Siedlecki, J.; O’Neill, S. A.; Sun, H. J. Am.
Chem. Soc. 1997, 119, 6919. (d) Coster, M. J.; De Voss, J. J. Org. Lett.
2002, 4, 3047. (e) Cossy, J.; Taillier, C.; Bellosta, V. Tetrahedron Lett.
2002, 43, 7263. (f) Kadota, I.; Uyehara, H.; Yamamoto, Y. Tetrahedron
2004, 60, 7361. (g) Rhee, H. J.; Beom, H. Y.; Kim, H.-D. Tetrahedron
Lett. 2004, 45, 8019. (h) Clark, J. S.; Freeman, R. P.; Cacho, M.; Thomas,
A. W.; Swallow, S.; Wilson, C. Tetrahedron Lett. 2004, 45, 8639. (i) Ortega,
N.; Martin, T.; Martin, V. S. Org. Lett. 2006, 8, 871.
To commence the synthesis, key R,R′-cis-oxocene 8 was
prepared in an efficient manner by a seven-step sequence
identical to that employed for our synthesis of (+)-laurencin7l
(35% overall yield from readily available glycolate oxazolidi-
none 1011 and the known allylic iodide 1112). With R,R′-cis-
oxocene 8 available in multigram quantities, we directed our
attention to synthesis of key internal Williamson substrate 7
(Scheme 3). Chlorination of R,R′-cis-oxocene alcohol 12,
prepared by chemoselective removal of the PMB group in cis-
oxocene 8 with wet DDQ,13 by treatment with carbon tetra-
chloride and tri-n-octylphosphine in the presence of 1-methyl-
cyclohexene,14 efficiently furnished the desired chloride 13 with
inversion of configuration at C(7).15 Literature analogy7f,16 and
spectroscopic analysis suggest that R,R′-cis-oxocene alcohol 12
(11) Jones, T. K.; Mills, S. G.; Reamer, R. A.; Askin, D.; Desmond, R.; Volante,
R. P.; Shinkai, I. J. Am. Chem. Soc. 1989, 111, 1157.
(12) Holton, R. A.; Zoeller, J. R. J. Am. Chem. Soc. 1985, 107, 2124.
(13) Oikawa, Y.; Yochika, T.; Yonemitsu, O. Tetrahedron Lett. 1982, 23, 885.
(14) (a) Tsushima, K.; Murai, A. Tetrahedron Lett. 1992, 33, 4345. (b)
Matsumura, R.; Suzuki, T.; Hagiwara, H.; Hoshi, T.; Ando, M. Tetrahedron
Lett. 2001, 42, 1543.
(15) We opted for the chloride instead of the corresponding bromide since the
yield of the chlorination (>77%) was significantly better than that of the
bromination (>60%) under comparable conditions.
(16) For the crystal structures of R,R′-cis-oxocene natural products, see: (a)
Cameron, A. F.; Cheung, K. K.; Ferguson, G.; Robertson, J. M. J. Chem.
Soc., Chem. Commun. 1965, 638. (b) Cameron, A. F.; Cheung, K. K.;
Ferguson, G.; Robertson, J. M. J. Chem. Soc. B 1969, 559. (c) Gonzalez,
A. G.; Martin, J. D.; Martin, V. S.; Norte, M.; Perez, R.; Ruano, J. Z.
Tetrahedron 1982, 38, 1009. (d) Norte, M.; Gonzalez, A. G.; Cataldo, F.;
Rodriguez, M. L.; Brito, I. Tetrahedron 1991, 45, 9411.
(10) (a) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982,
104, 1737. (b) Evans, D. A.; Cage, J. R.; Leighton, J. L.; Kim, A. S.
J. Org. Chem. 1992, 57, 1961. (c) Crimmins, M. T.; Emmitte, K. A.; Katz,
J. D. Org. Lett. 2000, 2, 2165.
9
2270 J. AM. CHEM. SOC. VOL. 129, NO. 8, 2007