10.1002/chem.201803466
Chemistry - A European Journal
FULL PAPER
reaction of 1a (5 mmol, 1.56 g) proceeded smoothly under the
standard conditions to afford 2a (1.06 g) in 68% yield [Eq. (2)].
A plausible mechanism is proposed in Scheme 2. Initially, an
amidine intermediate is formed upon enolization of the carbony
or thiocarbonyl of substrate 1a or 3a, then interacts with PIDA to
generate intermediate A[22] by loss of one molecule of acetic acid.
Nucleophilic attack of the anilide nitrogen atom at the
hypervalent iodo(III) center forms species B. The in situ
generated HOAc was neutralized by K2CO3 base to prevent the
intermediates and/or products 2a or 4a from decomposition
under the acidic conditions. Subsequent reductive elimination of
PhI yields iminoisoxazoline C or isothiazoline 4a. Due to the
instability of the NO bond under the reaction conditions,
intermediate C undergoes further Baldwin-rearrangement[23] to
afford oxazoline 2a through olefinic CC bond cleavage/
cyclization of iminoacyl-aziridine species D. The formation of
isothiazoline has suggested that the N-S bond in 4a is stable
under the stated conditions, whereas the NO bond in
isoxazoline C can not withstand the reaction conditions and thus
undergoes further NO cleavage reaction to form oxazoline 2a.
mmol) in 2.5 mL CH2Cl2 was stirred at 80 oC under an air atmosphere for
2 h. After cooled to ambient temperature, 5 mL CH2Cl2 was added and
the resultant mixture was filtered through a short pad of celite, followed
by rinsing with 10 mL CH2Cl2. The combined filtrate was concentrated
under reduced pressure. The resulting residue was purified by silica gel
column chromatography (eluent: petroleum ether (60-90 oC)/EtOAc/
CH2Cl2 (15:1:1, v/v/v)) to afford 2a as a white solid (69 mg, 74%).
Acknowledgements
We are grateful to the National Natural Science Foundation of
China (21472185) and the National Basic Research Program of
China (2015CB856600) for support of this research.
Keywords: PIDA • CC Bond Cleavage • Internal Olefins •
Oxazolines • Isothiazoline
[1]
[2]
a) R. H. Grubbs, S. Chang, Tetrahedron 1998, 54, 4413; b) Y. Zhang,
M. S. Sigman, J. Am. Chem. Soc. 2007, 129, 3076; c) C. Martínez, K.
Muñiz, Angew. Chem. 2012, 124, 7138; Angew. Chem. Int. Ed., 2012,
51, 7031.
a) D. Xing, B. Guan, G. Cai, Z. Fang, L. Yang, Z. Shi, Org. Lett. 2006, 8,
693; b) S.-T. Liu, K. V. Reddy, R.-Y. Lai, Tetrahedron 2007, 63, 1821; c)
N. M. Neisius, B. Plietker, J. Org. Chem. 2008, 73, 3218; d) T. Wang, N.
Jiao, J. Am. Chem. Soc. 2013, 135, 11692.
[3]
[4]
[5]
a) R. H. Grubbs, S. J. Miller, G. C. Fu, Acc. Chem. Res. 1995, 28, 446;
b) A. H. Hoveyda, A. R. Zhugralin, Nature 2007, 450, 243; c) J. Bidange,
C. Fischmeister, C. Bruneau, Chem. -Eur. J. 2016, 22, 12226.
a) F. Chen, T. Wang, N. Jiao, Chem. Rev. 2014, 114, 8613; b) T. Wang,
N. Jiao, Acc. Chem. Res. 2014, 47, 1137; c) G. Urgoitia, R. SanMartin,
M. T. Herrero, E. Domínguez, ACS Catal. 2017, 7, 3050.
a) P. Wipf, Chem. Rev. 1995, 95, 2115; b) M. Tsuda, M. Yamakawa, S.
Oka, Y. Tanaka, Y. Hoshino, Y. Mikami, A. Sato, H. Fujiwara, Y.
Ohizumi, J. Kobayashi, J. Nat. Prod. 2005, 68, 462; c) A. Araki, T.
Kubota, K. Aoyama, Y. Mikami, J. Fromont, J. Kobayashi, Org. Lett.
2009, 11, 1785.
[6]
a) B. Soltanzadeh, A. Jaganathan, R. J. Staples, B. Borhan, Angew.
Chem. 2015, 127, 9653; Angew. Chem. Int. Ed. 2015, 54, 9517; b) W.
Fu, X. Han, M. Zhu, C. Xu, Z. Wang, B. Ji, X.-Q. Hao, M.-P. Song,
Chem. Commun. 2016, 52, 13413; c) H. W. Luo, Z. Yang, W. L. Lin, Y.
G. Y. Zheng, S. M. Ma, Chem. Sci. 2018, 9, 1964; d) H. Jeon, D. Kim, J.
Hoon Lee, J. Song, W. S. Lee, D. W. Kang, S. Kang, S. B. Lee, S.
Choib, K. B. Honga, Adv. Synth. Catal. 2018, 360, 779.
Scheme 2. Proposed mechanism.
In summary, an efficient method has been developed to
synthesize substituted oxazolines via PIDA-mediated olefinic
CC bond cleavage/cyclization of α-oxo ketene N,N-acetals. The
methodology can also be applied to access isothiazolines from
the corresponding α-thioxo ketene N,N-acetals. The high atom
economy with use of cheap PIDA as the oxidant under transition
metal-free conditions makes the synthetic protocol be
environmentally benign.
[7]
[8]
[9]
a) S. P. Fearnley, C. Thongsornkleeb, J. Org. Chem. 2010, 75, 933; b)
H. Hamidian, S. Azizi, Bioorg. Med. Chem. 2015, 23, 7089.
B. K. Patnaik, D. N. Rout, G. N. Mahapatra, J. Indian Chem. Soc. 1978,
55, 925.
A. Guirado, A. Zapata, P. G. Jones, Tetrahedron 1995, 51, 10375.
[10] F. D. Sarlo, A. Guarna, P. Mascagni, R. Carrié, P. Guenot, J. Chem.
Soc. Perkin Trans. I, 1981, 1367.
[11] J. Drapier, A. Feron, R. Warin, A. J. Hubert, P. Teyssié, Tetrahedron
Lett. 1979, 20, 559.
[12] M. Han, H. G. Hahn, Bull. Korean Chem. Soc. 2012, 33, 1371.
[13] For recent selected reviews and book on hypervalent iodine reagents,
see: a) V. V. Zhdankin, P. J. Stang, Chem. Rev. 2008, 108, 5299; b) J.
W. Yuan, C. Liu, A. W. Lei, Chem. Commun. 2015, 51, 1394; c)
Hypervalent Iodine Chemistry, Topics in Current Chemistry, (Ed.: T.
Wirth), Springer Berlin Heidelberg, 2016; d) X. Wang, A. Studer, Acc.
Chem. Res. 2017, 50, 1712; e) Stuart, D. R. Chem. -Eur. J. 2017, 23,
15852.
Experimental Section
General procedure for the synthesis of 2
Synthesis of 2a: In a sealed 10-mL Pyrex glass screw-cap tube, a
mixture of 1-phenyl-3,3-bis-(phenylamino)prop-2-en-1-one (1a) (94 mg,
0.3 mmol), PhI(OAc)2 (116 mg, 0.36 mmol) and K2CO3 (83 mg, 0.6
4
This article is protected by copyright. All rights reserved.