Trapping of 2,5-Dihydropyridine by W(0) Complexes
Organometallics, Vol. 17, No. 3, 1998 365
Ta ble 4. Cr ysta l Da ta for C15H15O5NW
5.98-5.83 (m, 2H, 10-H, 9-H), 4.72 (m, 1H, 8-H), 4.22 (m, 1H,
8-H), 3.76 (m, 1H, 1-H), 3.40-3.05 (m, 2H, 11-H2), 2.30 (m,
2H, 2-H2), 1.40-1.15 (m, 4H, 2CH2), 0.91 (t, J ) 6.6 Hz, 15-
H3); 13C NMR (CDCl3) δ 203.8 (CO), 202.5 (CO), 151.5 (C-12),
120.9 and 119.1 (C-9 and C-10), 61.2 (C-1), 51.3 (C-8), 42.5
(C-2), 30.8 (C-11), 28.6 and 22.3 (2 CH2), 14.12 (CH3); MS (EI
70 eV, m/ e) 476. Spectral data for 7b (R ) Bu): 1H NMR
(CDCl3) δ 8.50 (m, 2H, H ortho Py), 7.83 (m, 1H, H para Py),
7.61 (m, 2H, H meta Py), 4.65 (dd, 1H, J ) 9.8 and 5.4 Hz,
1-H), 2.55 (m, 2H, 2-H2), 1.45-1.10 (m, 4H, 13-H2 and 14-H2),
0.85 (t, 3H, J ) 7.0 Hz, 15-H3); 13C NMR (CDCl3) δ 204.9 (CO),
202.2 (CO), 140.2, 136.8, and 127.0 (Py), 64.5 (C-1), 43.9 (C-
2), 31.9 (C-13), 22.3 (C-14), 14.2 (C-15). Anal. Calcd for
fw
473.1
a (Å)
b (Å)
c (Å)
R (deg)
â (deg)
γ (deg)
V (Å3)
Z
6.809(2)
20.928(12)
11.611(4)
90
100.93(3)
90
1625(9)
4
cryst syst
monoclinic
space group
P21/n
72.8
1.93
linear abs coeff µ (cm-1
)
density F (g cm-3
diffractometer
radiation
)
CAD4 Enraf-Nonius
Mo KR (λ ) 0.710 69 Å)
ω/2θ
C
15H15O5NW: C, 38.08; H, 3.20; N, 2.96. Found: C, 38.15; H,
3.17; N, 2.96.
scan type
Rea ction of (CO)5WdC(CH2CH2CH2CtCP h )OEt (1c)
w ith Dih yd r op yr id in es. Under the same conditions as
above, complex 1c gave a mixture of complexes 5c (0.75 g, 14%)
scan range (deg)
θ limits (deg)
temp of measurement
octants collected
0.8 + 0.345 tan θ
1-25
room temp
and 7c (0.92 g, 20%). Spectral data for 5c (R
)
0-8; 0-24; -13 to 13
3208
5-phenyl-4-pentynyl): 1H NMR (CDCl3) δ 8.31 (br s, 1H, 12-
H), 7.35 (m, 5H, Ar), 6.54 (m, 1H, 10-H), 5.85 (m, 1H, 9-H),
4.86 (br d, 1H, J ) 23.0 Hz, 8-H), 4.45 (br d, 1H, J ) 23.0 Hz,
8-H), 3.90 (br s, 1H, 1-H), 2.66 and 2.46 (m, 4H, 2-H2 and 17-
H2), 1.95 (br s, 6H, 2CH3), 1.57 (m, 2H, 16-H2); 13C NMR
(CDCl3) δ 204.0 (CO), 202.3 (CO), 148.8 (C-11), 145.9 (C-12),
131.6, 128.3, 127.8, and 123.7 (Ar), 121.6 (C-13), 120.8 and
120.5 (C-9 and C-10), 89.7 and 81.3 (C-18 and C-19), 59.7 (C-
1), 52.0 (C-8), 41.5 (C-2), 27.6 (C-17), 22.2 and 20.7 (Me), 18.9
(C-16); MS (EI, 70 eV; m/ e) 587. Spectral data for 7c (R )
5-phenyl-4-pentynyl): 1H NMR (CDCl3) δ 8.51 (m, 2H, H ortho
Py), 7.81 (m, 2H, H para Py), 7.55 (m, 2H, H meta Py), 7.30
(m, 5H, Ar), 4.73 (dd, 1H, J ) 10.3, 5.4 Hz, 1-H), 2.72 (m, 2H,
no. of data collected
no. of unique data collected
no. of unique data used
for refinement
2851
2150 ((Fo)2 > 3σ(Fo)2)
R(int)
0.0487
R ()Σ||Fo| - |Fc||/Σ|Fo|
Rw ) [Σw(|Fo| - |Fc|)2/ΣwFo
abs cor
0.0299
2
1/2
]
0.0328 (w ) 1.0)
DIFABS (min 0.86, max 1.33)
extinction param
no. of variables
none
245
-1.11
0.75
∆Fmin (e Å-3
)
∆Fmax (e Å-3
)
mixture of hexadeuterated dihydropyridines (prepared from
pyridine-d5, methyl chloroformate, NaBD4, methyllithium, and
H2O) to give complexes 6a D7 (4%) and 7a D6 (18%). Spectral
data for 6a D7: 1H NMR (CDCl3) δ 4.87 (m, 0.1H, 8-H), 4.19
(m, 0.1H, 8-H), 3.81 (m, 0.25H, 1-H), 3.21 (m, 1.85H, 11-H),
2-H2), 2.43 (t, 2H, J ) 6.0 Hz, 14-H2), 1.49 (m, 2H, 13-H2); 13
C
NMR (CDCl3) δ 204.6 (CO), 201.9 (CO), 140.0, 136.9, and 131.6
(Py), 127.8, 126.9, and 123.8 (Ar), 89.7 and 81.3 (C-15 and
C-16), 63.4 (C-1), 43.2 (C-2), 28.4 (C-14), 16.9 (C-13H); MS (EI,
70 eV; m/ e) 559. Anal. Calcd for C22H17O5NW: C, 47.24; H,
3.04; N, 2.50. Found: C, 47.27; H, 3.11; N, 2.51.
2
2.11 (d, 3H, J ) 6.5Hz, 2-H3); H NMR (CHCl3) δ 7.82 (br s,
1D, 12-D), 5.90 (m, 2D, 9-D/10-D), 4.87 (m, 0.9D, 8-D), 4.19
(m, 0.9D, 8-D), 3.81 (m, 0.75D, 1-D), 3.21 (m, 0.15D, 11-D).
Spectral data for 7a D6: 1H NMR (CDCl3) δ 8.53 (s, 0.1H, H
ortho Py), 4.90 (q, 0.2H, J ) 7.0Hz, 1-H), 2.35 (d, 3H, J )
7.0Hz, 2-H3); 2H NMR (CHCl3) δ 8.5 (sl, 1.9D, ortho Py), 7.82
(br s, 1D, D para Py), 7.59 (br s, 2D, D meta Py), 4.90 (br s,
0.8D, 1-D).
Rea ction of th e Ca r ben e Com p lex (CO)5WdC(CH3)OEt
(1a ) w ith Mixtu r es of Deu ter a ted Dih yd r op yr id in es.
Rea ction w ith Mon od eu ter a ted Dih yd r op yr id in es. Un-
der the same conditions as above, complex 1a reacts with a
mixture of monodeuterated dihydropyridines (prepared from
pyridine, methyl chloroformate, NaBD4, methyllithium, and
H2O) to give the complexes 6a D2 (20%) and 7a D1 (49%).
Spectral data for 6a D2: 1H NMR (CDCl3) δ 7.82 (br s, 1H, 12-
H), 5.91 (m, 2H, 9-H/10-H), 4.87 (m, 0.6H, 8-H), 4.19 (m, 0.6H,
8-H), 3.81 (m, 0.75H, 1-H), 3.21 (m, 2H, 11-H), 2.11 (d, 3H, J
) 6.5Hz, CH3); 2H NMR (CHCl3) δ 4.87 (br s, 0.4D, C-8D), 4.19
(br s, 0.4D, C-8D). Spectral data for 7a D1: 1H NMR (CDCl3)
δ 8.55 (d, 1.6H, J ) 6.0Hz, H ortho Py), 7.82 (m, 1H, H para
Py), 7.59 (m, 2H, H meta Py), 4.90 (q, 0.78H, J ) 7.0Hz, C-1H),
Rea ction of (CO)5WdC(CH3)OEt (1a ) w ith a Mixtu r e
of Dih yd r op yr id in es P r ep a r ed w ith CD3Li. Freshly pre-
pared dihydropyridines (obtained from 1-carbomethoxy dihy-
dropyridine and perdeuterated methyllithium (2 equiv) in
diethyl ether (20 mL)) was added at room temperature to the
carbene 1a (1 g, 2.7 mmol) in diethyl ether (10 mL). The
solution was worked up as above to give, besides complexes
6a and 7a , 5a D6. Spectral data for 5a D6: 1H NMR (CDCl3) δ
8.21 (br s, 1 H, C-12H), 6.59 (ddd, 1H, J ) 10.6, 3.9, and 1.9Hz,
C-10H), 5.91 (ddd, 1H, J ) 10.6, 3.5, and 3.5Hz, C-9H), 5.43
(br d, 1H, J ) 22.7Hz, C-8H), 4.43 (br d, 1H, J ) 22.7Hz,
C-8H), 3.86 (q, 1H, J ) 6.6Hz, C-1H), 2.18 (d, 3H, J ) 6.6Hz,
C-2H3); 13C NMR (CDCl3) δ 204.1 (CO trans), 202.41 (CO cis),
147.7 (C-11), 144.1 (C-12), 121.8 (C-13), 120.9 and 120.6 (C-9,
C-10), 53.0 (C-8), 52.6 (C-1), 30.1 (C-2), 22.2 and 20.9 (m,
dC(CD3)2).
2
2.35 (d, 3H, J ) 7.0Hz, C-2H3); H NMR (CHCl3) δ 8.5 (br s,
0.4D, D ortho Py), 4.90 (br s, 0.22D, C-1D).
Rea ction w ith P en ta d eu ter a ted Dih yd r op yr id in es.
Under the same conditions as above, complex 1a reacts with
a mixture of pentadeuterated dihydropyridines (prepared from
pyridine-d5, methyl chloroformate, NaBH4, methyllithium, and
H2O) to give complexes 6a D6 (7%) and 7a D5 (27%). Spectral
data for 6a D6: 1H NMR (CDCl3) δ 4.87 (m, 0.45H, 8-H), 4.19
(m, 0.5H, 8-H), 3.81 (m, 0.7H, 1-H), 3.21 (m, 1.75H, 11-H), 2.11
X-r a y Str u ctu r e Deter m in a tion . X-ray-quality crystals
were obtained by slow evaporation of dichloromethane from a
solution of complex 4a (R ) Me) in a mixture of dichloro-
methane and hexane. Data were collected at room tempera-
ture on a Nonius CAD4 diffractometer (Table 4). Empirical
absorption correction using DIFABS (minimum 0.86, maxi-
mum 1.33) was applied. Anomalous dispersion terms were
applied, there was no correction of secondary extinction. The
structure was solved by standard Patterson-Fourier techniques
and refined by least-squares analysis using anisotropic
2
(d, 3H, J ) 6.5Hz, 2-H3); H NMR (CHCl3) δ 7.82 (br s, 1D,
12-D), 5.90 (m, 2D, 9-D/10-D), 4.87 (m, 0.5D, 8-D), 4.19 (m,
0.5D, 8-D), 3.81 (m, 0.3D, 1-D), 3.21 (m, 0.3D, 11-D). Spectral
data for 7a D5: 1H NMR (CDCl3) δ 8.55 (s, 0.25H, H ortho Py),
4.90 (q, 0.75H, J ) 7.0Hz, 1-H), 2.35 (d, 3H, J ) 7.0Hz, 2-H3);
2H NMR (CHCl3) δ 8.5 (br s, 1.7D, ortho Py), 7.82 (br s, 1D, D
para Py), 7.59 (br s, 2D, D meta Py), 4.90 (br s, 0.25D, 1-D).
Reaction with Hexadeu ter ated Dih ydr opyr idin es. Un-
der the same conditions as above, complex 1a reacts with a