Organic & Biomolecular Chemistry
Paper
8 G. J. P. Britovsek, J. Ugolotti and A. J. P. White,
Organometallics, 2005, 24, 1685–1691.
Conclusions
We demonstrate the synthesis, characterization of Lewis acidic
aminoboranes. Through analysis of the Fluoride Ion Affinity
9 R. C. Neu, E. Y. Ouyang, S. J. Geier, X. Zhao, A. Ramos and
D. W. Stephan, Dalton Trans., 2010, 39, 4285–4294.
we surmised that the Lewis acidity of these aminoboranes is 10 U. Gellrich, Angew. Chem., Int. Ed., 2018, 57, 4779–4782.
not immediately related to B–N bond length, but instead the 11 A. J. V. Marwitz, M. H. Matus, L. N. Zakharov, D. A. Dixon
resulting change in aromaticity of the N-contained rings upon
adduct formation. All of the tested aminoboranes, with the 12 M. E. Glogowski, P. J. Grisdale, J. L. R. Williams and
exception of 4, showed catalytic activity in the hydrosilylation L. Costa, J. Organomet. Chem., 1974, 74, 175–183.
of acetophenone, though only 2 proved effective in the dehy- 13 J. Wang, Y. Wang, T. Taniguchi, S. Yamaguchi and S. Irle,
drocoupling of stannanes – owing to the similarity of phenoxa- J. Phys. Chem. A, 2012, 116, 1151–1158.
zine to phenothiazine. Finally, the carbazole substituted ami- 14 T. Taniguchi, J. Wang, S. Irle and S. Yamaguchi, Dalton
noborane 5 was shown to effect catalytic transformations even Trans., 2013, 42, 620–624.
in the presence of Lewis basic donors and donor solvents. This 15 N. M. D. Brown, F. Davidson and J. W. Wilson,
activity, despite the presence of water and donor solvent could J. Organomet. Chem., 1980, 192, 133–138.
open the doors to new, kinetically bench-stable Lewis acids for 16 C. Arivazhagan, A. Maity, K. Bakthavachalam, A. Jana,
and S.-Y. Liu, Angew. Chem., Int. Ed., 2009, 48, 973–977.
frustrated Lewis pair transformations. We have begun investi-
gating this exciting prospect and will report our findings in
due course.
S. K. Panigrahi, E. Suresh, A. Das and S. Ghosh, Chem. –
Eur. J., 2017, 23, 7046–7051.
17 G. Kehr, R. Fröhlich, B. Wibbeling and G. Erker, Chem. –
Eur. J., 2000, 6, 258–266.
18 J. W. Strauch, J. L. Fauré, S. Bredeau, C. Wang, G. Kehr,
R. Fröhlich, H. Luftmann and G. Erker, J. Am. Chem. Soc.,
2004, 126, 2089–2104.
Author contributions
J. N. B., S. S., and E. P. were responsible for data 19 D. Winkelhaus, Y. V. Vishnevskiy, R. J. F. Berger,
collection. C. B. C., and T. Z. were responsibly for
supervision. J. N. B., S. S., E. P., T. Z., and C. B. C. were respon-
sible for writing, reviewing, and editing the manuscript.
H.-G. Stammler, B. Neumann and N. W. Mitzel, Z. Anorg.
Allg. Chem., 2013, 639, 2086–2095.
20 J. N. Bentley, E. Pradhan, T. Zeng and C. B. Caputo, Dalton
Trans., 2020, 49, 16054–16058.
21 J. N. Bentley, S. A. Elgadi, J. R. Gaffen, P. Demay-Drouhard,
T. Baumgartner and C. B. Caputo, Organometallics, 2020,
39, 3645–3655.
Conflicts of interest
There are no conflicts to declare.
22 J. R. Galsworthy, M. L. H. Green, V. C. Williams and
A. N. Chernega, Polyhedron, 1998, 17, 119–124.
23 A. G. Massey and A. J. Park, J. Organomet. Chem., 1966, 5,
218–225.
24 M. G. Hogben and W. A. G. Graham, J. Am. Chem. Soc.,
1969, 91, 283–291.
Acknowledgements
We are grateful to York University, the Natural Sciences and
Engineering Research Council of Canada, the Canada 25 F. Blank, H. Scherer, J. Ruiz, V. Rodríguez and C. Janiak,
Foundation for Innovation, and the Canada Research Chairs
program.
Dalton Trans., 2010, 39, 3609–3619.
26 U. Mayer, V. Gutmann and W. Gerger, Monatsh. Chem.,
1975, 106, 1235–1257.
27 M. A. Beckett, G. C. Strickland, J. R. Holland and
K. S. Varma, Polymer, 1996, 37, 4629–4631.
28 J. R. Gaffen, J. N. Bentley, L. C. Torres, C. Chu,
T. Baumgartner and C. B. Caputo, Chem, 2019, 5, 1567–1583.
Notes and references
1 J. W. B. Fyfe and A. J. B. Watson, Chem, 2017, 3, 31–55.
2 A. Dasgupta, R. Babaahmadi, B. Slater, B. F. Yates, 29 P. Erdmann, J. Leitner, J. Schwarz and L. Greb,
A. Ariafard and R. L. Melen, Chem, 2020, 6, 2364–2381. ChemPhysChem, 2020, 21, 987–994.
3 H. C. Brown, K. W. Kim, M. Srebnik and S. Bakthan, 30 S. Grimme, J. G. Brandenburg, C. Bannwarth and
Tetrahedron, 1987, 43, 4071–4078. A. Hansen, J. Chem. Phys., 2015, 143, 054107.
4 Y. Soltani, L. C. Wilkins and R. L. Melen, Angew. Chem., Int. 31 R. Sure, J. G. Brandenburg and S. Grimme, ChemistryOpen,
Ed., 2017, 56, 11995–11999. 2016, 5, 94–109.
5 W. Meng, X. Feng and H. Du, Acc. Chem. Res., 2018, 51, 32 Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2005, 109,
191–201.
5656–5667.
6 D. W. Stephan, Science, 2016, 354, aaf7229.
7 J. R. Lawson and R. L. Melen, Inorg. Chem., 2017, 56, 8627–
8643.
33 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005,
7, 3297–3305.
34 F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2018, 8, 4–9.
This journal is © The Royal Society of Chemistry 2021
Org. Biomol. Chem., 2021, 19, 4796–4802 | 4801