6294
K. Hisler et al. / Tetrahedron Letters 47 (2006) 6293–6295
Table 1. Aldehydes produced from Wittig reactions
Entry
Phosphonium salt
Aldehyde product
Yield (%)
−
+ Br
X
O(CH2)3CHO
X
O(CH2)3PPh3
1
2
3
4
8, X = H
9, X = Cl
10, X = OMe
11, X = CN
14, X = H
89
92
86
83
15, X = Cl
16, X = OMe
17, X = CN
−
Br
+
5
(CH2)3CHO
(CH2)3PPh3
12
18
88
95
+
−
6
C12H25CHO
C12H25PPh3
Br
13
19
ketones 2 by a route that avoids the highly reactive orga-
nometallic reagents; the conversion is effected upon
reaction with alkylidenetriphenylphosphoranes.6–8
Supplementary data
Supplementary data associated with this article can be
The preparation of ketones from Weinreb amides paral-
lels the attack of organometallics such as Grignard
and organolithium reagents, but we had no parallel
route to aldehydes. This letter reports a solution to
the task of producing aldehydes using these milder
methods.
References and notes
1. Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22,
3815–3818.
The Weinreb amide required for the preparation of alde-
2. (a) Kuethe, J. T.; Comins, D. L. Org. Lett. 2000, 2, 855–
857; (b) Davis, F. A.; Chao, B. Org. Lett. 2000, 2, 2623–
2625; (c) Lee, K.-Y.; Kim, Y.-H.; Oh, C.-Y.; Ham, W.-H.
Org. Lett. 2000, 2, 4041–4042; (d) Wallace, G. A.; Scott,
R. W.; Heathcock, C. H. J. Org. Chem. 2000, 65, 4145–
4152; (e) Smith, A. B., III; Beauchamp, T. J.; LaMarche,
M. J.; Kaufman, M. D.; Qiu, Y.; Arimoto, H.; Jones, D.
R.; Kobayashi, K. J. Am. Chem. Soc. 2000, 122, 8654–
8664; (f) Trost, B. M.; Gunzner, J. L. J. Am. Chem. Soc.
2001, 123, 9449–9450; (g) Ghosh, A. K.; Wang, Y.; Kim,
J. T. J. Org. Chem. 2001, 66, 8973–8982; (h) Vanderwal, C.
D.; Vosburg, D. A.; Sorensen, E. J. Org. Lett. 2001, 3,
4307–4310; (i) Crich, D.; Dudkin, V. J. Am. Chem. Soc.
2002, 124, 2263–2266; (j) Vosburg, D. A.; Vanderwal, C.
D.; Sorensen, E. J. J. Am. Chem. Soc. 2002, 124, 4552–
4553; (k) Crimmins, M. T.; Stanton, M. G.; Allwein, S. P.
J. Am. Chem. Soc. 2002, 124, 5958–5959; (l) Trost, B. M.;
Crawley, M. L. J. Am. Chem. Soc. 2002, 124, 9328–9329;
(m) Cheung, A. K.; Snapper, M. L. J. Am. Chem. Soc.
2002, 124, 11584–11585; (n) Wipf, P.; Rector, S. R.;
Takahashi, H. J. Am. Chem. Soc. 2002, 124, 14848–14849;
(o) Denmark, S. E.; Yang, S.-M. J. Am. Chem. Soc. 2002,
124, 15196–15197; (p) Toda, N.; Ori, M.; Takami, K.;
Tago, K.; Kogen, H. Org. Lett. 2003, 5, 269–271; (q)
Nicolaou, K. C.; Fylaktakidou, K. C.; Monenschein, H.;
Li, Y.; Weyershausen, B.; Mitchell, H. J.; Wei, H.-X.;
Guntupalli, P.; Hepworth, D.; Sugita, K. J. Am. Chem.
Soc. 2003, 125, 15433–15442; (r) Zanatta, S. D.; White, J.
M.; Rizzacasa, M. A. Org. Lett. 2004, 6, 1041–1044; (s)
Taillier, C.; Bellosta, V.; Cossy, J. Org. Lett. 2004, 6,
2145–2147; (t) Taillier, C.; Bellosta, V.; Meyer, C.; Cossy,
J. Org. Lett. 2004, 6, 2149–2151; (u) Ghosh, A. K.; Gong,
G. J. Am. Chem. Soc. 2004, 126, 3704–3705.
hydes would be N-methoxy-N-methyl formamide9
6
(Scheme 2). Our attempts to prepare it initially foun-
dered. The procedure9 involves treating the free amine
N-methoxy-N-methylamine 4 with methyl formate 5 in
the presence of excess quantities of sodium methoxide.
Although the product 6 undoubtedly forms, as seen by
NMR, the vacuum distillation needed to purify it led
to essentially 0% yield. Our studies showed that the
product was converted to volatile compounds; the excess
base that was not removed during filtration was reform-
ing methyl formate 5, via 7, which was removed in
vacuo.
In fact, excess base should not be needed. If catalytic
base were to be used and remained at the start of the dis-
tillation, this might regenerate small quantities of amine
4 and methyl ester 5, but these would then disappear
from the distillation in vacuo. The amine 4 produced,
could not harm the remaining product. In practice, this
use of catalytic base led to reliable isolation of the
desired product 6.
This Weinreb amide was then reacted with a series of
phosphonium salts (Scheme 3) as shown in Table 1.
As seen, the reactions proceeded in excellent yield to
afford the corresponding aldehydes after work-up with
mild acid.10 This provides a simple route to aldehydes
using a Weinreb amide under mild conditions.
3. (a) Kruger, J.; Hoffmann, R. W. J. Am. Chem. Soc. 1997,
¨
Acknowledgements
119, 7499–7504; (b) Evans, D. A.; Bender, S. L.; Morris, J.
J. Am. Chem. Soc. 1988, 110, 2506–2526.
4. Turner, J. A.; Jacks, W. S. J. Org. Chem. 1989, 54, 4229–
4231.
We thank the EPSRC national mass spectrometry
service centre, Swansea, for mass measurements.