[9] For selected reviews: (a) Hong, M.; Chen, J.; Chen, E. Y.-X.
Polymerization of Polar Monomers Mediated by Main-Group Lewis
Acid-Base Pairs. Chem. Rev. 2018, 118, 10551-10616. (b) Zhao, W.;
He, J.; Zhang, Y. Lewis pairs polymerization of polar vinyl
monomers. Science Bulletin 2019, 64, 1830-1840. (c) McGraw, M. L.;
Chen, E. Y.-X. Lewis Pair Polymerization: Perspective on a Ten-Year
Ultra-High-Molecular-Weight Polymers Produced by the Immortal
Phosphine-Based Catalyst System. Angew. Chem., Int. Ed. 2018, 57,
17230-17234. (d) Wang, H.; Wang, Q.; He, J.; Zhang, Y. Living
polymerization of acrylamides catalysed by N-heterocyclic
olefin-based Lewis pairs. Polym. Chem. 2019, 10, 3597-3603.
[13] For selected examples: (a) Jia, Y.; Ren, W.; Liu, S.; Xu, T.; Wang, Y.;
Lu, X. Controlled Divinyl Monomer Polymerization Mediated by
Lewis Pairs: A Powerful Synthetic Strategy for Functional Polymers.
ACS Macro Lett. 2014, 3 896-899. (b) Gowda, R. R.; Chen, E. Y.-X.
Chemoselective Lewis Pair polymerization of renewable
multivinyl-functionalized γ-Butyrolactones. Philos. Trans. R. Soc. A
2017, 375, 20170003. (c) Zhang, P.; Zhou, H.; Lu, X. Living and
Chemoselective (Co)polymerization of Polar Divinyl Monomers
Mediated by Bulky Lewis Pairs. Macromolecules 2019, 52,
4520-4525.
[14] For selected examples: (a) Wang, Y.; Hong, M.; Bailey, T. S.; Chen, E.
Y.-X. Brush Polymer of Donor-Accepter Dyads via Adduct Formation
between Lewis Base Polymer Donor and All Carbon Lewis Acid
Acceptor. Molecules 2017, 22, 1564. (b) Wang, M.; Nudelman, F.;
Matthes, R. R.; Shaver, M. P. Frustrated Lewis Pair Polymers as
Responsive Self-Healing Gels. J. Am. Chem. Soc. 2017, 139,
14232-14236. (c) Vidal, F.; Lin, H.; Morales C.; Jäkle, F.
Polysiloxane/Polystyrene Thermo-Responsive and Self-Healing
Polymer Network via Lewis Acid-Lewis Base Pair Formation.
Molecules 2018, 23, 405.
Journey.
Macromolecules,
2020,
doi:
10.1021/acs.macromol.0c01156.
[10] For selected examples: (a) He, J.; Zhang, Y.; Chen, E. Y.-X. Synthesis
of Pyridine- and 2-Oxazoline-Functionalized Vinyl Polymers by
Alane-Based Frustrated Lewis Pairs. Synlett 2014, 25, 1534-1538. (b)
Knaus, M. G. M.; Giuman, M. M.; Pöthig, A.; Rieger B. End of
Frustration: Catalytic Precision Polymerization with Highly
Interacting Lewis Pairs. J. Am. Chem. Soc. 2016, 138, 7776-7781. (c)
McGraw, M.; Chen, E. Y.-X. Catalytic Lewis Pair Polymerization of
Renewable Methyl Crotonate to High-Molecular-Weight Polymers.
ACS Catal. 2018, 8, 9877-9887. (d) Weger, M.; Grötsch, R. K.; Knaus,
M. G.; Giuman, M. M.; Mayer, D. C.; Altmann, P. J.; Mossou, E.;
Dittrich, B.; Pöthig, A.; Rieger, B. Non-Innocent Methylene Linker in
Bridged Lewis Pair Initiators. Angew. Chem., Int. Ed. 2019, 58,
9797-9801. (e) Clarke, R. W.; McGraw, M. L.; Gowda, R. R.; Chen, E.
Y.-X. Lewis Pair Polymerization of Renewable Indenone to
Erythro-Ditactic High-Tg Polymers with an Upcycling Avenue.
Macromolecules 2020, 53, 640-648. (f) Wang, X.; Hong, M. Precise
Control of Molecular Weight and Stereospecificity in Lewis Pair
Polymerization of Semifluorinated Methacrylates: Mechanistic
Studies and Stereocomplex Formation. Macromolecules 2020, 53,
4659-4669. (g) Wang, X.; Hong, M. Lewis Pair-mediated Selective
Dimerization and Polymerization of Lignocellulose-based β-Angelica
Lactone to Biofuel and Acrylic Bioplastic. Angew. Chem., Int. Ed.
2020, 59, 2664-2668.
[15] Zhang, Y.; Miyake, G. M.; John, M. G.; Falivene, L.; Caporaso, L.;
Cavallo, L.; Chen, E. Y.-X. Lewis pair polymerization by classical and
frustrated Lewis pairs: acid, base and monomer scope and
polymerization mechanism. Dalton Trans. 2012, 41, 9119-9134.
[16] Flynn, S. R.; Wass, D. F. Transition Metal Frustrated Lewis Pairs. ACS
Catal. 2013, 3, 2574-2581.
[11] For selected examples: (a) Piedra-Arroni, E.; Ladavière, C.;
Amgoune, A.; Bourissou, D. Ring-Opening Polymerization with
Zn(C6F5)2-Based Lewis Pairs: Original and Efficient Approach to Cyclic
Polyesters. J. Am. Chem. Soc. 2013, 135, 13306-13309. (b)
Naumann, S.; Scholten, P. B. V.; Wilson, J. A.; Dove, A. P. Dual
Catalysis for Selective Ring-Opening Polymerization of Lactones:
Evolution toward Simplicity. J. Am. Chem. Soc. 2015, 137,
14439-14445. (c) Ji, H.; Wang, B.; Pan, L.; Li, Y. Lewis Pairs for
Ring-Opening Alternating Copolymerization of Cyclic Anhydrides
and Epoxides. Green Chem. 2018, 20, 641-648. (d) Walther, P.;
Krauß, A.; Naumann, S. Lewis Pair Polymerization of Epoxides via
Zwitterionic Species as a Route to High-Molar-Mass Polyethers.
Angew. Chem., Int. Ed. 2019, 58, 10737-10741. (e) Ji, H.; Song, D;
Wang, B.; Pan, L.; Li, Y. Organic Lewis pairs for selective
copolymerization of epoxides with anhydrides to access
sequence-controlled block copolymers. Green Chem. 2019, 21,
6123-6132.
[17] (a) Berkefeld, A.; Piers, W. E.; Parvez, M.; Castro, L.; Maron, L.;
Eisenstein, O. Decamethylscandocinium- hydrido- (perfluorophenyl)
-borate: fixation and tandem tris(perfluorophenyl)-borane catalysed
deoxygenative hydrosilation of carbon dioxide. Chem. Sci. 2013, 4,
2152-2162. (b) Arnold, P. L.; Marr, I. A.; Zlatogorsky, S.; Bellabarba,
R.; Tooze, R. P. Activation of carbon dioxide and carbon disulfide by
a scandium N-heterocyclic carbene complex. Dalton Trans. 2014,
43, 34-37. (c) Xu, P.; Xu, X. Homoleptic Rare-Earth Aryloxide Based
Lewis Pairs for Polymerization of Conjugated Polar Alkenes. ACS
Catal. 2018, 8, 198-202. (d) Chang, K.; Dong, Y.; Xu, X. Dihydrogen
activation by intermolecular rare-earth aryloxide/N-heterocyclic
carbene Lewis pairs. Chem. Commun. 2019, 55, 12777-12780. (e)
Dong, Y.; Chang, K.; Xu, X. Reactions of Rare-Earth Metal Based
Lewis Pairs with Azides. Chin. J. Chem. 2020, 38, 559-564.
[18] Xu, P.; Yao, Y.; Xu, X. Frustrated Lewis Pair-Like Reactivity of
Rare-Earth Metal Complexes: 1,4-Addition Reactions and
Polymerizations of Conjugated Polar Alkenes. Chem. Eur. J. 2017,
23, 1263-1267.
[19] Yasuda, H. Organo-rare-earth-metal initiated living polymerizations
of polar and nonpolar monomers. J. Organomet. Chem. 2002, 647,
128-138.
[12] For selected examples: (a) Wang, Q.; Zhao, W.; Zhang, S.; He, J.;
Zhang, Y.; Chen, E. Y.-X. Living Polymerization of Conjugated Polar
Alkenes Catalyzed by N-Heterocyclic Olefin-Based Frustrated Lewis
Pairs. ACS Catal. 2018, 8, 3571-3578. (b) Wang, B.; Pan, L.; Ma, Z.; Li,
Y. Ring-Opening Polymerization with Lewis Pairs and Subsequent
Nucleophilic Substitution: A Promising Strategy to Well-Defined
[20] Chen, E. Y.-X. Coordination Polymerization of Polar Vinyl Monomers
by Single-Site Metal Catalysts. Chem. Rev. 2009, 109, 5157-5214.
[21] Saitoh, A.; Morimoto, T.; Achiwa, K. A phosphorus-containing chiral
amidine Ligand for asymmetric reactions: enantioselective
Polyethylene-like
Polyesters
without
Transesterification.
Macromolecules 2018, 51, 836-845. (c) Bai, Y.; He, J.; Zhang, Y.
Chin. J. Chem. 2019, 37, XXX-XXX
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
This article is protected by copyright. All rights reserved.