Organometallics 1998, 17, 501-503
501
Su ccessive O-C/O-H a n d sp 3 C-H Bon d Activa tion of
or th o Su bstitu en ts in Allyl P h en yl Eth er s a n d P h en ols
by a Ru th en iu m (0) Com p lex
Masafumi Hirano, Naoki Kurata, Tsuyoshi Marumo, and Sanshiro Komiya*
Department of Applied Chemistry, Faculty of Technology, Tokyo University of Agriculture and
Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, J apan
Received October 17, 1997
Summary: Successive O-C and sp3 C-H bond activa-
tion occurs in the reaction of Ru(COD)(COT) (1)/ PMe3
transition metals8 and ortho-substituted phenyl isocya-
nides by RuH(naphthyl)(dmpe)2.9
In the C-H bond activation process, the presence of
a hydrogen acceptor may facilitate metal-carbon bond
formation. We have previously reported oxidative ad-
dition of the O-C bond of allyl esters in the presence of
Ru(1,5-COD)(1,3,5-COT) (1; COD ) cyclooctadiene, COT
) cyclooctatriene) and a tertiary phosphine to give Ru-
(OCOR)(η3-C3H5)(PR′3)3.10 Because η3-allyl ligands are
known to be good hydride and halide acceptors,11 we
anticipated that the η3-allyl group in the ruthenium
complexes could promote further intramolecular activa-
tions. In this paper, we wish to communicate successive
O-C/O-H and sp3 C-H bond activations of ortho
substituents in allyl phenyl ethers and phenols by 1 in
the presence of tertiary phosphines under neutral and
mild conditions.
The reaction of allyl phenyl ether with 1 at 50 °C in
the presence of PMe3 resulted in the formation of Ru-
(OPh)(η3-C3H5)(PMe3)3 (2) in 37% yield (Scheme 1);12 the
molecular structure of 2 is depicted in Figure 1.13
The structure of 2 shows that oxidative addition of
the O-C bond of the ether had occurred to give an (η3-
allyl)(phenoxo)ruthenium(II) complex. Similarly, treat-
ment of 1/PMe3 with allyl 2-tolyl ether resulted in
with allyl 2,6-xylyl ether to give Ru[OC6H3(o-CH2)(o′-
Me)](PMe3)4 (4). Alternatively, 4 can be obtained by
O-H and sp3 C-H bond activation in 2,6-xylenol by
1/ PMe3. In both cases, an η3-allyl fragment could be
responsible for the sp3 C-H bond activation.
C-H bond activation by transition-metal complexes
is an important area of organometallic chemistry, due
to its potential utility in organic synthesis.1 Although
most recent efforts in this area concern the activation
of simple alkanes, selective C-H bond activation of
functionalized molecules is also important. Examples2
of this are known with low-valent ruthenium complexes,
e.g., regioselective C-H bond activation in acrylates3
and catalytic ortho C-H bond activation in pyridines4
and aromatic ketones.5 These results show the impor-
tance of prior coordination to bring the unreactive C-H
bond near the metal center. Although substitution at
ortho positions in a ligand has been used to block
undesired ortho metalation6 or to increase steric conges-
tion, C-H bond activation of ortho substituents by late-
transition-metal complexes is relatively unexplored.7
Published examples include the sp3 C-H bond activa-
tion of ortho-substituted aryloxo ligands by group 6
(6) For recent articles dealing with ortho metalations of aryl alcohols
and carboxylates by ruthenium complexes: (a) Hartwig, J . F.; Berg-
man, R. G.; Andersen, R. A. J . Organomet. Chem. 1990, 394, 417. (b)
Bag, N.; Bhanja Choudhury, S.; Pramanik, A.; Kumar Lahiri, G.;
Chakravorty, A. Inorg. Chem. 1990, 29, 5013. (c) Hartwig, J . F.;
Bergman, R. G.; Andersen, R. A. J . Am. Chem. Soc. 1991, 113, 3404.
(d) Hartwig, J . F.; Bergman, R. G.; Andersen, R. A. J . Am. Chem. Soc.
1991, 113, 6499. (e) Ozawa, F.; Yamagami, I.; Yamamoto, A. J .
Organomet. Chem. 1994, 473, 265.
(7) C-H bond activations of substituent groups at the ortho positions
are carried out by early-transition-metal aryloxides: (a) Rothwell, I.
P. Acc. Chem. Res 1988, 21, 153. (b) Yu, J . S.; Fanwick, P. E.; Rothwell,
I. P. J . Am. Chem. Soc. 1990, 112, 8171. (c) Visciglio, V. M.; Clark, J .
R.; Nguyen, M. T.; Mulford, D. R.; Fanwick, P. E.; Rothwell, I. P. J .
Am. Chem. Soc. 1997, 119, 3490 and references therein.
(8) (a) Rabinovich, D.; Zelman, R.; Parkin, G. J . Am. Chem. Soc.
1990, 112, 9632. (b) Rabinovich, D.; Zelman, R.; Parkin, G. J . Am.
Chem. Soc. 1992, 114, 4611. (c) Hascall, T.; Murphy, V. J .; Parkin, G.
Organometallics 1996, 15, 3910.
(9) (a) J ones, W. D.; Kosar, W. P. J . Am. Chem. Soc. 1986, 108, 5640.
(b) Hsu, G. C.; Kosar, W. P.; J ones, W. D. Organometallics 1994, 13,
385.
(10) Komiya, S.; Kabasawa, T.; Yamashita, K.; Hirano, M.; Fukuoka,
A. J . Organomet. Chem. 1994, 471, C6. Reaction of 1/PEt3 with vinyl
acetate: Komiya, S.; Suzuki, J .; Miki, K.; Kasai, N. Chem. Lett. 1987,
1287.
(11) (a) Minami, I.; Yamada, M.; Tsuji, J . Tetrahedron Lett. 1986,
27, 1805. (b) Maruyama, Y.; Sezaki, T.; Tekawa, M.; Sakamoto, T.;
Shimizu, I.; Yamamoto, A. J . Organomet. Chem. 1994, 473, 257. (c)
Nagashima, H.; Mukai, K.; Shiota, Y.; Yamaguchi, K.; Ara, K.;
Fukahori, T.; Suzuki, H.; Akita, M.; Moro-oka, Y.; Itoh, K. Organome-
tallics 1990, 9, 799.
* To whom correspondence should be addressed. E-mail: komiya@
cc.tuat.ac.jp. FAX +81-423-87-7500.
(1) (a) Shilov, A. E. The Activation of Saturated Hydrocarbons by
Transition Metal Complexes; Reidel: Dordrecht, The Netherlands, 1984.
(b) Crabtree, R. H. Chem. Rev. 1985, 85, 245. (c) Wasserman, E. P.;
Moore, C. B.; Bergman, R. G. Science 1992, 255, 315. (d) Homogeneous
Transition Metal Catalyzed Reactions; Moser, W. R., Slocum, D. W.,
Eds.; Advances in Chemistry 230; American Chemical Society: Wash-
ington, DC; 1992. (e) Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.;
Peterson, T. H. Acc. Chem. Res. 1995, 28, 154.
(2) For examples: (a) Ittel, S. D.; Tolman, C. A.; English, A. D.;
J esson, J . P. J . Am. Chem. Soc. 1978, 100, 7577. (b) Hartwig, J . F.;
Bergman, R. G.; Andersen, R. A. J . Am. Chem. Soc. 1991, 113, 3404.
(c) Hartwig, J . F.; Bergman, R. G.; Andersen, R. A. Organometallics
1991, 10, 3326, 3344. (d) Murahashi, S.-I.; Naota, T.; Taki, H.; Mizuno,
M.; Takaya, H.; Komiya, S.; Mizuho, Y.; Oyasato, N.; Hiraoka, M.;
Hirano, M.; Fukuoka, A. J . Am. Chem. Soc. 1995, 117, 12436. (e)
Gomez-Bengoa, E.; Cuerva, J . M.; Mateo, C.; Echavarren, A. M. J . Am.
Chem. Soc. 1996, 118, 8553.
(3) (a) Komiya, S.; Yamamoto, A. Chem. Lett. 1975, 475. (b) Komiya,
S.; Ito, T.; Cowie, M.; Yamamoto, A.; Ibers, J . A. J . Am. Chem. Soc.
1976, 98, 3874.
(4) Moore, E. J .; Pretzer, W. R.; O’Connell, T. J .; Harris, J .;
LaBounty, L.; Chou, L.; Grimmer, S. J . Am. Chem. Soc. 1992, 114,
5888.
(5) (a) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani,
A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529. (b) Murai, S. J .
Synth. Org. Chem., J pn. 1994, 52, 992. (c) Sonoda, M.; Kakiuchi, F.;
Kamatani, A.; Chatani, N.; Murai, S. Chem. Lett. 1996, 109 and
references therein.
S0276-7333(97)00911-4 CCC: $15.00 © 1998 American Chemical Society
Publication on Web 01/27/1998