lithiation has been speculated to generate carbenoid inter-
13
mediates in reaction with R2CBr2 and in the Fritsch-
Buttenberg-Wiechell rearrangement.14 Nevertheless, to the
best of our knowledge, there have been no examples using
lithium-halogen exchange to form diaminocarbenes from
chloroamidiniums. Recently, our group discovered that ADC-
Cu complexes can be generated in situ from chloroamidinium
1 and Cu(I)-thiophenecarboxylate in the presence of Grignard
reagents.15 Herein, we report a more general lithium-halogen
exchange route to acylic diaminocarbenes and convenient
one-pot transmetalation to various metal-ADC species.
First, access to the carbene intermediate through lithium-
halogen exchange was probed. Intercept of a carbene
intermediate with sulfur to form a thiourea can be taken as
simple proof of carbene generation (Scheme 1).16 We were
Figure 1. Routes to acyclic diaminocarbenes.
by nucleophilic addition of either hydrazines or amines to
metal-bound isocyanides (Figure 1B),5 and Fu¨rstner dem-
onstrated that monodentate ADC-Pd complexes can be
prepared via oxidative addition of (Ph3P)4Pd into the C-Cl
bond of chloroamidinium ion precursors (Figure 1C).6
However, this route to carbenes requires the use and
incorporation of phosphine into metal catalyst, limiting the
applicability.
Scheme 1. Proof of Carbene Intermediacy
We envisioned that, when applied to chloroamidinium
precursors, lithium-halogen exchange might provide a new
and general route to diaminocarbenes (eq 1). Organolithium
reagents have played an important role in organic synthesis,8
and the formation of these reagents proceeds through a
number of routes including reduction with metallic lithium,9
deprotonation with a lithiated base,10 lithium-halogen ex-
change,11 and transmetalation.12 It is important to note that
pleased to isolate thiourea 2 in 68% yield when the
organolithium intermediate was treated with elemental sulfur.
Without lithium-halogen exchange no thiourea was formed.
In addition, the carbene intermediacy is further sup-
ported by low-temperature 13C NMR studies with 13C-
labeled chloroamidinium precursor 1′. After treatment of
chloroamidinium 1′ with n-BuLi at -78 °C in THF-d8, a
characteristic ADC resonance at 233 ppm17 was observed
at -30 °C, suggesting the generation of a carbene
species.18 In the 2D gHMBC spectrum, the carbene carbon
(232.9 ppm) displayed couplings with two protons at 3.47
and 3.66 ppm (Figure 2). The gDQCOSY spectrum
(4) (a) Frey, G. D.; Herdtweck, E.; Herrmann, W. A. J. Organomet.
Chem. 2006, 691, 2465–2478. (b) Frey, G. D.; Herrmann, W. A. J.
¨
Organomet. Chem. 2005, 690, 5876–5880. (c) Herrmann, W. A.; Ofele,
K.; Preysing, D. V.; Herdtweck, E. J. Organomet. Chem. 2003, 684, 235–
248. (d) Denk, K.; Sirsch, P.; Herrmann, W. A. J. Organomet. Chem. 2002,
649, 219–224.
(5) (a) Wanniarachchi, Y. A.; Kogiso, Y.; Slaughter, L. M. Organome-
tallics 2008, 27, 21–24. (b) Wanniarachchi, Y. A.; Slaughter, L. M. Chem.
Commun. 2007, 3294–3296. (c) Moncada, A. I.; Manne, S.; Tanski, J. M.;
Slaughter, L. M. Organometallics 2006, 25, 491–505.
(6) (a) Kremzow, D.; Seidel, G.; Lehmann, C. W.; Fu¨rstner, A.
Chem.sEur. J. 2005, 11, 1833–1853. (b) Arduengo, A. J., III.; Tapu, D.;
Marshall, W. J. J. Am. Chem. Soc. 2005, 127, 16400–16401. (c) Fu¨rstner,
A.; Seidel, G.; Kremzow, D.; Lehmann, C. W. Organometallics 2003, 22,
907–909. (d) McGuinness, D. S.; Cavell, K. J.; Yates, B. F.; Skelton, B. W.;
White, A. H. J. Am. Chem. Soc. 2001, 123, 8317–8328.
(11) (a) Bailey, W. F.; Patricia, J. J. J. Organomet. Chem. 1988, 352,
1–46. (b) Jones, R. G.; Gilman, H. In Organic Reactions; Adams, R., Ed.;
Wiley: New York, 1951; Vol. 6, pp 339-366.
(12) Pereyre, M.; Quintard, J.-P.; Rahm, A. Tin in Organic Synthesis;
Butterworths: Stoneham, 1986.
(7) (a) Rosen, E. L.; Sanderson, M. D.; Saravanakumar, S.; Bielawski,
C. W. Organometallics 2007, 26, 5774–5777. (b) Dhudshia, B.; Thadani,
A. N. Chem. Commun. 2006, 668–670.
(13) (a) Ko¨brich, G.; Fischer, R. H. Tetrahedron 1968, 24, 4343–4346.
(b) Dilling, W. L.; Edamura, F. Y. J. Org. Chem. 1967, 32, 3492–3499.
(14) (a) Luu, T.; Morisaki, Y.; Cunningham, N.; Tykwinski, R. R. J.
Org. Chem. 2007, 72, 9622–9629. (b) Fritsch, P. Liebigs Ann. Chem. 1894,
279, 319–323. (c) Buttenberg, W. P. Liebigs Ann. Chem. 1894, 279, 324–
337. (d) Wiechell, H. Liebigs Ann. Chem. 1894, 279, 337–344.
(15) Hirsch-Weil, D.; Snead, D. R.; Inagaki, S.; Seo, H.; Abboud, K. A.;
Hong, S. Chem. Commun. 2009, 2475–2477.
(8) The Chemistry of Organolithium Compounds; Rappoport, Z.; Marek,
I., Eds.; John Wiley and Sons Ltd.: Chichester, England, 2004; Parts 1 and
2 of Vol. 2.
(9) (a) Najera, C.; Sansano, J. M.; Yus, M. Tetrahedron 2003, 59, 9255–
9303. (b) Yus, M. Chem. Soc. ReV. 1996, 155–161.
(10) (a) Anctil, E. J.; Snieckus, V. In Metal-Catalyzed Cross-Coupling
Reactions, 2nd ed.; de Meijere, A., DiederichF., Eds.; Wiley-VCH:
Weinheim, Germany 2004; pp 761-813. (b) Beak, P.; Johnson, T. A.; Kim,
D. D.; Lim, S. H. Top. Organomet. Chem. 2003, 5, 139–176.
(16) Arduengo, A. J., III. Acc. Chem. Res. 1999, 32, 913–921.
(17) Tapu, D.; Dixon, D. A.; Roe, C. Chem. ReV. 2009, Published ASAP
(DOI: 10.1021.cr800521g).
Org. Lett., Vol. 11, No. 15, 2009
3275