COMMUNICATIONS
Table 1. Activity a against factor Xa by the pentasaccharides 1 ± 4 and the
reference compound 17.
changes of the pyranose ring have important significance in
the biology of heparin. Other recent studies have also
emphasized the importance of boat or skew-boat conformers
in biology.[25±28] We believe that the importance of the
conformational flexibility of carbohydrates is now very clear
and is going to emerge as a key feature in this field of science.
1
[c]
Compound
a [umg ]
1[a]
2
3
1208 Æ 63
1073 Æ 61
115 Æ 3
4
43 Æ 3
17[b]
1345 Æ 65
Received: November 23, 2000 [Z16162]
[a] The activity against factor Xa of the genuine nonmethylated synthetic
1
pentasaccharide is 1013 Æ 52 umg
. [b] Compound 17 is a synthetic
[1] B. Casu, M. Petitou, A. Provasoli, P. SinayÈ, Trends Biochem. Sci. 1988,
13, 221 ± 225.
[2] U. Lindahl, D. A. Lane, Heparin, Edward Arnold, London, 1989.
[3] H. E. Conrad, Heparin-Binding Proteins, Academic Press, New York,
1998.
[4] B. Casu, J. Choay, D. R. Ferro, G. Gatti, J.-C. Jacquinet, M. Petitou, A.
Provasoli, M. Ragazzi, P. SinayÈ, G. Torri, Nature 1986, 322, 215.
[5] J. Choay, J.-C. Lormeau, M. Petitou, P. SinayÈ, J. Fareed, Ann. NYAcad.
Sci. 1981, 370, 644 ± 649.
[6] L. Thunberg, G. Bäckström, U. Lindahl, Carbohydr. Res. 1982, 100,
393 ± 410.
nonlocked reference analogue of 1 in which the H-5 atom of the d-
glucuronic acid unit E has been replaced by an ethyl group. [c] The values
are the mean activities against factor Xa (n 3). Human factor Xa (71 nkat
per vial), antithrombin, and S-2222 substrate (Bz-Ile-Glu-Gly-Arg-pNA)
were from Chromogenix (Mölndal, Sweden). The activity was determined
in buffer by an amidolytic method adapted from Teien and Lie.[29] For an
accurate comparison, compound concentrations were determined by
1H NMR spectroscopy with reference to an internal standard. u the
inhibitory effect, in the same assay, of one unit of the IVth International
heparin standard, Bz benzoyl.
[7] J. Choay, M. Petitou, J.-C. Lormeau, P. SinayÈ, B. Casu, G. Gatti,
Biochem. Biophys. Res. Commun. 1983, 116, 492 ± 499.
[8] P. SinayÈ, J.-C. Jacquinet, M. Petitou, P. Duchaussoy, I. Lederman, J.
Choay, G. Torri, Carbohydr. Res. 1984, 132, C5 ± C9.
[9] G. Torri, B. Casu, G. Gatti, M. Petitou, J. Choay, J.-C. Jacquinet, P.
SinayÈ, Biochem. Biophys. Res. Commun. 1985, 128, 134 ± 140.
[10] M. Ragazzi, D. R. Ferro, A. Provasoli, J. Comput. Chem. 1986, 7, 105±112.
[11] D. R. Ferro, A. Provasoli, M. Ragazzi, G. Torri, B. Casu, G. Gatti, J.-C.
Jacquinet, P. SinayÈ, M. Petitou, J. Choay, J. Am. Chem. Soc. 1986, 108,
6773 ± 6778.
[12] P. Westerduin, C. A. A. van Boeckel, J. E. M. Basten, M. A. Broek-
hoven, H. Lucas, A. Rood, H. van der Heijden, R. G. M. van Am-
sterdam, T. G. van Dinther, D. G. Meuleman, A. Visser, G. M. T.
Vogel, J. B. L. Damm, G. T. Overklift, Bioorg. Med. Chem. 1994, 2,
1267 ± 1283.
[13] J. F. Stoddart, Stereochemistry of Carbohydrates, Wiley, New York,
1971, p. 57.
[14] M. K. Gurjar, S. K. Das, U. K. Saha, Tetrahedron Lett. 1994, 35, 2241 ±
2244.
[15] H. Paulsen, T. Hasenkamp, M. Paal, Carbohydr. Res. 1985, 144, 45 ± 55.
[16] J. M. Küster, I. Dyong, Liebigs Ann. Chem. 1975, 2179 ± 2189.
[17] H. van der Heijden, T. Geertsen, M. Pennekamp, R. Willems, D. J.
Vermaas, P. Westerduin, Abstr. Pap. 9th Europ. Carbohydr. Symp.
(Utrecht) 1997, p. 154.
[18] M. Petitou, P. Duchaussoy, I. Lederman, J. Choay, J.-C. Jacquinet, P.
SinayÈ, G. Torii, Carbohydr. Res. 1987, 167, 67 ± 75.
[19] P. Köll, F. S. Tayman, K. Heyns, Chem. Ber. 1979, 112, 2305 ± 2313.
[20] A full account of the syntheses of 3 and 4 will be separately described
elsewhere.
[21] In the case of the pentasaccharide 4, the glucuronic acid unit E has
also been modified, with the H-5 atom being replaced by an ethyl
group. This is a direct consequence of the selected converging strategy
that has been selected for the sake of simplicity. We have, however,
shown that replacement of the H-5 atom by an ethyl group in
compound 1 does not affect its biological activity (see Table 1).
[22] N. Sakairi, J. E. M. Basten, G. A. van der Marel, C. A. A. van Boeck-
el, J. H. van Boom, Chem. Eur. J. 1996, 2, 1007 ± 1013.
[23] J. Kovensky, P. Duchaussoy, F. Bono, M. Salmivirta, P. Sizun, J.-M.
Herbert, M. Petitou, P SinayÈ, Biorg. Med. Chem. 1999, 1567 ± 1580.
[24] D. H. R. Barton, Science 1970, 169, 539 ± 544.
Scheme 4. Our synthetic strategy is based on the construction of a key
structural element in which the C-5 atom is harnessed with two appendages,
an equatorially oriented protected hydroxymethyl group and an axially
oriented vinyl group. Through classical manipulations, this architecture can
be selectively converted into one of the three conformers.
the inhibition of the blood coagulation protease factor Xa.
This work unambiguously demonstrates for the first time that
2
the AT-bound l-iduronic acid unit G adopts the unusual S0
conformation and clearly explains how the unique conforma-
tional behavior of l-iduronic acid translates in terms of
biological activity.
It is likely that the accessibility of the three conformers is
the basis for the high versatility of glycosaminoglycans
(GAGs) that contain l-iduronic acid for binding to basic sites
of interacting proteins. Although the 2S0 skew-boat conformer
nicely governs the antithrombotic activity of heparin, it could
very well be that the chair forms are critical in other situations,
such as high affinity for fibroblast growth factors.[23] The
availability of the three synthetic locked conformers offers a
unique opportunity to replace any flexible l-iduronic acid
residue in a GAG chain by a conformationally defined
counterpart, thus providing a direct tool for general explora-
tion of the relationship between conformational flexibility
and biological properties of GAGs.
[25] P. E. Marszalek, A. F. Oberhauser, Y.-P. Pang, J. M. Fernandez, Nature
1998, 396, 661 ± 664.
[26] P. E. Marszalek, Y.-P. Pang, H. Li, J. E. Yazal, A. F. Oberhauser, J. M.
Fernandez, Proc. Natl. Acad. Sci. USA 1999, 96, 7894 ± 7898.
[27] E. Sabini, G. Sulzenbacher, M. Dauter, Z. Dauter, P. L. Jorgensen, M.
Schülein, C. Dupont, G. J. Davies, K. S. Wilson, Chem. Biol. 1999, 6,
483 ± 492.
[28] G. J. Davies, L. Mackenzie, A. Varrot, M. Dauter, M. Brzozowski, M.
Schülein, S. Withers, Biochemistry 1998, 37, 11707 ± 11713.
[29] A. N. Teien, M. Lie, Thromb. Res. 1977, 10, 399 ± 410.
As laid out by Barton,[24] a conformational analysis of cyclic
molecules is critical for the understanding of their biological
action. We have demonstrated here that the conformational
Angew. Chem. Int. Ed. 2001, 40, No. 9
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4009-1673 $ 17.50+.50/0
1673