2340
P. Furet et al. / Bioorg. Med. Chem. Lett. 10 (2000) 2337±2341
Table 1. Inhibitory activity of phosphinate derivatives Ac-Phe(4-
CH2-PO2H-R)-Ac6c-(1S,2R)-Achc-NH2 and reference phosphono-
peptide Ac-Pmp-Ac6c-(1S,2R)-Achc-NH2
R.; Panek, R. L.; Lu, G. H.; Dahring, T. K.; Rose, D. R. J.
Med. Chem. 1998, 41, 4329.
8. For a review on SH2 domain crystallographic or NMR
structures see Kuriyan, J.; Cowburn, D. Annu. Rev. Biophys.
Biomol. Struct. 1997, 26, 259.
Compounds
R
IC50, mMa
9. Burke, T. R., Jr.; Luo, J.; Yao, Z.-J.; Gao, Y.; Zhao, H.;
Milne, G. W. A.; Guo, R.; Voigt, J. H.; King, C. R.; Yang, D.
Bioorg. Med. Chem. Lett. 1999, 9, 347.
10. Beaulieu, P. L.; Cameron, D. R.; Ferland, J.-M.; Gauthier,
J.; Ghiro, E.; Gillard, J.; Gorys, V.; Poirier, M.; Rancourt, J.;
Wernic, D.; Llinas-Brunet, M.; Betageri, R.; Cardozo, M.;
Hickey, E. R.; Ingraham, R.; Jakes, S.; Kabcenell, A.; Kirrane,
T.; Lukas, S.; Patel, U.; Proudfoot, J.; Sharma, R.; Tong, L.;
Moss, N. J. Med. Chem. 1999, 42, 1757.
6
7
8
9
10
11
CH2OH
CH2CH2OH
CH2Ph
7.6
1.6
1.2
0.53
25.5
0.7
CH(OH)Phb
CH3
OH
aValues are means of three experiments.
bMixture of two diastereomers (R and S at the hydroxy substituted
benzylic carbon).
11. Rahuel, J. Unpublished results. The main dierence between
this structure and that of the Grb2-SH2 phosphotyrosyl peptide
complex previously published (Rahuel, J.; Gay, B.; Erdmann,
D.; Strauss, A.; Garcõa-Echeverrõa, C.; Furet, P.; Caravatti, G.;
Fretz, H.; Schoepfer, J.; Grutter, M. Nature Struct. Biol. 1996, 3,
586) is a movement of the BC loop that positions Ser BC2 at a
longer distance from the ligand. As a consequence the direct
hydrogen bond existing between the phosphate group and Ser
BC2 in the latter structure becomes water mediated in the case of
the phosphonate analogue structure.
interactions with the SH2 domain. Introduction of an
alcohol chain targeting Ser BC2 for hydrogen bonding
enhances potency (6 and 7 compared to 10). The eect is
more pronounced with 7, in agreement with our hypoth-
esis that a water molecule is displaced. A substantial gain
in potency (20 times) is also obtained with the benzyl
substituent (8 compared to 10), which supports the
existence of the designed stacking interaction with Arg
aA2. As anticipated, combining the two favourable
structural modi®cations results in the most active deriva-
tive 9 of the series.
12. For the nomenclature of SH2 domain residues see: Lee, C.
H.; Kominos, D.; Jacques, S.; Margolis, B.; Schlessinger, J.;
Shoelson, S. E.; Kuriyan, J. Structure 1994, 2, 423.
13. The design and molecular modelling work was carried out
interactively in MacroModel using the AMBER force ®eld
(dielectric constant of 4 r) to energy minimise the protein±ligand
complexes. (a) MacroModel v.4.0: Mohamadi, F.; Richards, N.
G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Cau®eld, C.;
Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem.
1990, 11, 440. (b) Weiner, S. J.; Kollman, P. A.; Case, D. A.;
Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S., Jr.; Weiner,
P. J. Am. Chem. Soc. 1984, 106, 765.
Conclusion
This work demonstrates that it is possible to ®nd mono
charged isosteres of pTyr that give Grb2-SH2 domain
inhibitors as potent as that obtained with the classical
doubly charged Pmp isostere when incorporated in the
same peptide sequence. In addition to bearing only one
charge, the resulting compounds reported here do not
contain any proteinogenic amino acids. These molecules
pave the way for a new generation of Grb2-SH2 domain
blockers useful in cell and in vivo studies.
14. Ligand residues are numbered relative to the position of
the phosphotyrosine which is denoted pTyr0.
15. Malpass, J. R.; Tweddle, N. J. J. Chem. Soc., Perkin Trans. 1
1997, 874. The synthesis of an analogue of 13 (rac,cis-2-amino-
cyclohex-3-ene carboxylic acid) was previously reported by our
group in ref 2. Additional experimental SAR data on potent
Grb2-SH2 antagonists containing asparagine mimetics have
been reported in: Furet, P.; Gay, B.; Schoepfer, J.; Zeller, M.;
Rahuel, J.; Satoh, Y.; Garcõa-Echeverrõa, C. Peptides: Frontiers
of Peptide Science, Proc. Am. Pept. Symp. 2000, in press.
16. Durst, T.; O'Sullivan, M. J. J. Org. Chem. 1970, 35, 2043.
17. The resolution of the racemic mixture was carried out
using a Chiralpak AD column (5Â50 cm; 20 mm) eluted with
hexane:MeOH (24:1, v/v; 0.1% TFA) at a ¯ow rate of 150 mL/
min and detection at 210 nm (recovery: 66%). The purity of
the ®nal compounds was veri®ed by analytical HPLC on a
Chiralpak AD column (0.46Â25 cm) eluted with hexane:
MeOH (19:1, v/v; 0.1% TFA) at a ¯ow rate of 1 mL/min and
detection at 210 nm; single peak at tR=12.34 (1S,2R) min and
tR=15.35 min (1R,2S).
Acknowledgements
We gratefully acknowledge the technical assistance of Mrs.
D. Arz, Mrs. V. von Arx, Mr. R. Wille, Mrs. C. Stamm,
Mr. P. Haner and Mr. R. Vogelsanger.
References and Notes
1. Smithgall, T. E. J. Pharma. Toxico. Methods 1995, 34, 125.
2. Furet, P.; Garcõa-Echeverrõa, C.; Gay, B.; Schoepfer, J.;
Zeller, M.; Rahuel, J. J. Med. Chem. 1999, 42, 2358.
3. Furet, P.; Gay, B.; Caravatti, G.; Garcõa-Echeverrõa, C.;
Rahuel, J.; Schoepfer, J.; Fretz, H. J. Med. Chem. 1998, 41,
3442.
4. Garcõa-Echeverrõa, C.; Furet, P.; Gay, B.; Fretz, H.;
Rahuel, J.; Schoepfer, J.; Caravatti, G. J. Med. Chem. 1998,
41, 1741.
5. Furet, P.; Gay, B.; Garcõa-Echeverrõa, C.; Rahuel, J.; Fretz,
H.; Schoepfer, J.; Caravatti, G. J. Med. Chem. 1997, 40, 3551.
6. Yao, Z.-J.; King, C. R.; Cao, T.; Kelley, J.; Milne, G. W.
A.; Voigt, J. H.; Burke, T. R., Jr. J. Med. Chem. 1999, 42, 25.
7. Eaton, S. R.; Cody, W. L.; Doherty, A. M.; Holland, D.
18. Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D.
Tetrahedron Lett. 1989, 30, 1927.
19. The crude compounds 6±11 were puri®ed by medium-
pressure liquid chromatography on a C18-column using an
acetonitrile±water gradient. The purity of the ®nal compounds
was veri®ed by reversed-phase analytical HPLC on a Nucleosil
column (250Â4.0 mm; 5 mm, 100 A): linear gradient over 10min
of MeCN/0.09% TFA and H2O/0.1% TFA from 1:49 to 3:2,
¯ow rate 2.0 mL/min, detection at 215 nm; single peak at
tR=6.79 min (6), tR=6.90 min (7), tR=6.67 min (8), tR=
8.10 min (9), tR=7.19 min (10), and tR=6.65 min (11). Mass
spectral analyses (matrix-assisted laser-desorption ionisation
time-of-¯ight mass spectrometry, MALDI-TOF): 536.8 (calcd