H
(10 H, Ph); dC(75.5 MHz, CDCl3) 13.39 (q, J 131.2), 13.68 (q, J 128.2),
21.59 (q, J 127.5), 27.51 (q, J 127.5), 34.75 (dd, J 137.9, 25.5), 59.37 (d, J
141.6), 81.46 (s), 126.65–133.72 (m), 152.87 (s), 171.09 (s); Calc. for
BC21H27NO3P: C, 65.81; H, 7.10; N, 3.65; P, 8.08. Found: C, 65.81; H,
7.14; N, 3.65; P, 7.93%. [a]D + 58 (c 1.0, CHCl3).
H
Ph2P
Ph2P
i
O
+
O
OMe
HN
N
O
O
O
O
(R,R)-3
(R)-8
(R)-7
1 R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New
York, 1993; I. Ojima, Catalytic Asymmetric Synthesis, VCH, New York,
1993.
Scheme 4 Reagents and conditions: i, MeOH, K2CO3, room temp.
2 I. Hayashi, M. Konishi, M. Fukushima, T. Mise, M. Kagotani, M. Tajika
and M. Kumada, J. Am. Chem. Soc., 1982, 104, 180; P. Wimmer and
M. Widhalm, Tetrahedron: Asymmetry , 1995, 6, 657; H. Kubota and
K. Koga, Tetrahedron Lett., 1994, 95, 6689.
3 J. Spring and G. Helmchen, Tetrahedron Lett., 1993, 34, 1769; P. von
Matt and A. Pfaltz, Angew. Chem., Int. Ed. Engl., 1993, 32, 566;
G. J. Dawson, C. G. Frost and J. M. J. Williams, Tetrahedron Lett.,
1993, 34, 3149.
4 A. Togni, U. Burckhardt, V. Gramlich, P. S. Pregosin and R. Salzmann,
J. Am. Chem. Soc., 1996, 118, 1031.
5 J. M. Brown, D. J. Hulmes and P. J. Guiry, Tetrahedron, 1994, 50,
4493.
the optically active phosphine methyl ester (R)-7 in 90% yield
after column chromatography under N2 (Scheme 4).
In conclusion, we report the selective preparation of an
optically pure phosphinoacyloxazolidinone. The synthesis in-
volves the preparation of an optically active acyloxazolidinone
via catalytic enantioselective hydrogenation and its use as chiral
inductor for stereoselective phosphinylation. This type of new
compound has potential as a new heterobidentate ligand in
asymmetric catalysis, and as a building block for access to a
variety of optically active phosphorus derivatives via cleavage
of the oxazolidinone ring.
6 Y. Uozumi and T. Hayashi, J. Am. Chem. Soc., 1991, 113, 9887;
J. F. Marcaux, S. Wagaw and S. L. Buchwald, J. Org. Chem., 1997, 62,
1568.
Notes and References
7 T. Minami, Y. Okada, T. Otaguro, S. Tawaraya, T. Furiuki and
T. Okauchi, Tetrahedron: Asymmetry, 1995, 6, 2469.
8 Y. Nagagawa, M. Kanai, Y. Nagaoka and K. Tomioka, Tetrahedron
Lett., 1996, 37, 7805.
† E-mail: pierre.dixneuf@univ-rennes1.fr
‡ Selected data for (R)-2: dH (300 MHz, CDCl3) 1.14 (3 H, t, J 7.3, MeCH2),
1.26 (3 H, d, J 6.6, MeCH), 1.39 and 1.41 (2 3 3 H, 2 s, Me2C), 2.88 and
2.90 (2 H, m, J 16.0, 7.35, MeCH2CO), 4.16 (1 H, q, J 6.6, CHMe); dC(75.5
MHz, CDCl3) 8.35 (q, J 128), 14.69 (q, J 128), 21.55 (q, J 127), 27.83 (q,
J 128), 29.33 (t, J 128), 58.88 (d, J 147), 81.41 (s), 152.79 (s), 174.34 (s);
Calc. for C9H15NO3: C, 58.36; H, 8.16; N, 7.56. Found: C, 58.07; H, 8.45;
N, 7.60%. [a]D 251 (c 0.9, CHCl3).
§ Selected data for (R,R)-6: mp 141 °C; dP(121.5 MHz, CDCl3) 26.76 (q, J
48.8); dH(300 MHz, CDCl3) 1.09 (3 H, d, J 6.6, NCHCH3), 1.17 (3 H, s,
CMe2), 1.35 (3 H, s, CMe2), 1.42 [3 H, dd, J 15.5, 6.9, MeCH(PPh2)], 4.03
(1 H, q, J 6.6, NCHCH3), 5.50 [1 H, dq, J 12.7, 6.9, CH(PPh2)], 7.39–7.90
9 D. Enders and T. Berg, Synlett, 1996, 796.
10 D. J. Ager, I. Prakash and D. R. Schaad, Chem. Rev., 1996, 96, 835.
11 S. G. Davies, M. E. C. Polywka and H. J. Sanganee, Int. Appl. WO
95/18112, 1995.
12 J.-M. Joumier, J. Fournier, C. Bruneau and P. H. Dixneuf, J. Chem. Soc.,
Perkin Trans. 1, 1991, 3271.
Received in Liverpool, UK, 14th November 1997; 7/08223A
534
Chem. Commun., 1998