M.-X. Wang, S.-J. Lin / Tetrahedron Letters 42 (2001) 6925–6927
6927
Scheme 2.
arylglycines 3d–h, while only with para-substituted
phenylglycine nitriles such as 1b and 1f was good to
excellent enantiocontrol observed for the corresponding
amino amides.
2. Wegman, M. A.; Hacking, M. A. P. J.; Rops, J.; Pereira,
P.; van Rantwijk, F.; Sheldon, R. A. Tetrahedrom: Asym-
metry 1999, 10, 1739 and references cited therein.
3. For a review, see: Coppola, G. M.; Schuster, H. F.
Asymmetric Synthesis, Construction of Chiral Molecules
Using Amino Acids. Wiley: New York, 1987.
4. For reviews, see: (a) Duthaler, R. O. Tetrahedron 1994,
50, 1539; (b) Williams, R. M. Synthesis of Optically Active
h-Amino Acids; Pergamon: Oxford, 1989; (c) Williams, R.
M.; Hendrix, J. A. Chem. Rev. 1992, 92, 889.
5. For reviews: see: (a) Enzyme Catalysis in Organic Synthe-
sis; Drauz, K.; Waldmann, H., Eds.; VCH: Weinheim,
1995; (b) Wong, C.-H.; Whitesides, G. M. Enzymes in
Synthetic Organic Chemistry; Pergamon, 1994; (c) Prepar-
ative Biotransformations: Whole Cell and Isolated Enzymes
in Organic Chemistry; Roberts, S. M., Ed.; Wiley: New
York, 1993.
6. Baker, S. R.; Goldsworthy, J.; Harden, R. C.; Salhoff, C.
R.; Schoepp, D. D. Bioorg. Med. Chem. Lett. 1995, 5, 223.
7. Garcia, M. J.; Azerad, R. Tetrahedron: Asymmetry 1997,
8, 85 and references cited therein.
8. Hermes, H. F. M.; Tandler, R. F.; Sonke, T.; Dijkhuizen,
L.; Meijer, E. M. Appl. Environ. Microbiol. 1994, 60, 153.
9. The Chemistry of the Cyano Group; Rappoport, Z., Ed.;
Wiley Interscience: New York, 1970.
To shed further light on the process, the racemic
phenylglycine amide 2a, obtained from the chemical
hydration of phenylglycine nitrile 1a using concentrated
H2SO4 (98%), was fed to Rhodococcus sp. AJ270 under
identical reaction conditions. The reaction was termi-
nated at 50% conversion to give
D
-phenylglycine amide
2a in 84% e.e. and
L
-phenylglycine 3a in 85% e.e.
(Scheme 2).
The outcome of the biotransformations of arylglycine
nitriles 1 and of phenylglycine amide 2a indicated that
the amidase involved in Rhodococcus sp. AJ270 is
highly
L
-
or S-enantioselective, while the nitrile
- or S-enantioselec-
hydratase probably also exhibits
L
tivity but to a low degree.22 Additionally, the enantiose-
lectivity of nitrile hydratase is probably affected greatly
by the structure of the amino nitriles. Therefore double
S-enantioselections of nitrile hydratase and amidase
resulted in the enantiopure arylglycines 3 and optically
active arylglycine amides 2 with varied enantiomeric
excesses depending on the substrates.
10. For recently reviews, see: (a) Sugai, T.; Yamazaki, T.;
Yokoyama, M.; Ohta, H. Biosci. Biotech. Biochem. 1997,
61, 1419; (b) Crosby, J.; Moiliet, J.; Parratt, J. S.; Turner,
N. J. J. Chem. Soc., Perkin Trans. 1 1994, 1679.
11. Meth-Cohn, O.; Wang, M.-X. J. Chem. Soc., Perkin
Trans. 1 1997, 1099; J. Chem. Soc., Perkin Trans. 1 1997,
3197.
12. Wang, M.-X.; Lu, G.; Ji, G.-J.; Huang, Z.-T.; Meth-
Cohn, O.; Colby, J. Tetrahedron: Asymmetry 2000, 11,
1123.
In conclusion, we have shown a very efficient, conve-
nient and scale-upable method for the preparation of
optically active L-arylglycines and D-arylglycine amides
from the biotransformation of racemic arylglycine
nitriles using Rhodococcus sp. AJ270 cells under very
mild conditions. The overall enantioselectivity of the
reaction was derived from the combined effects of a
high L-enantioselective amidase and a low L-enantiose-
lective nitrile hydratase involved in the cell.
13. Wang, M.-X.; Feng, G.-Q. Tetrahedron Lett. 2000, 41,
6501.
14. Wang, M.-X.; Liu, C.-S.; Li, J.-S.; Meth-Cohn, O. Tetra-
hedron Lett. 2000, 41, 8549.
15. Bhalla, T. C.; Miura, A.; Wakamoto, A.; Ohba, Y.;
Furuhashi, K. Appl. Microbiol. Biotechnol. 1992, 37, 184.
16. Macdam, A. M.; Knowles, C. J. Biotechnol. Lett. 1985, 7,
865.
17. Choi, S. Y.; Goo, Y. M. Arch. Pharm. Res. 1986, 9, 45.
18. Arnaud, A.; Galzy, P.; Jallageas, J. Bull. Soc. Chim. Fr.
1980, 87.
Acknowledgements
This work was supported by the Major Basic Research
Development Program (No. 2000077506), the National
Natural Science Foundation of China and the Chinese
Academy of Sciences. M.-X.W. thanks O. Meth-Cohn
and J. Colby for discussion.
19. Preparation of amino nitriles, see: Hanafusa, T.; Ichihara,
J.; Ashida, T. Chem. Lett. 1987, 687.
20. For general procedure of biotransformation, see: Ref. 12.
21. Chiral HPLC analysis was performed using a CROWN-
PAK CR(+) column (150 mm×4 mm) with H2O–HClO4
(pH 1.5–1.9) solution as an eluent.
22. Similar low S-enantioselectivity of nitrile hydratase was
observed in the biotransformation of 2-aryl-3-methylbuty-
ronitriles. Wang, M.-X.; Li, J.-J.; Ji, G.-J.; Li, J.-S. J.
Mol. Catal. B-Enzym. 2001, 14, 81.
References
1. (a) Watkins, J.; Collingridge, G. TiPS 1994, 15, 333; (b)
Sekiyama, N.; Hayashi, Y.; Nakanishi, S.; Jane, D. E.;
Tse, H.-W.; Birse, E. F.; Watkins, J. C. Br. J. Pharmacol.
1995, 117, 1593.