M. Zatloukal et al. / Bioorg. Med. Chem. 16 (2008) 9268–9275
9275
a substrate. Cell-free growth medium of S. cerevisiae strain 23344c
We thank Jarmila Balonová, Jarmila Greplová, and Miloslava
Šubová for skilful technical assistance.
ura- harbouring the plasmid pYES2-AtCKX2 (100
lL) was used di-
rectly as a source of AtCKX2.4 Plates were incubated in the dark
for 30 min at 37 °C and the enzymatic reaction was stopped by
adding 25 lL of 35% acetic acid per well. The absorbance of the
Supplementary data
mixture in each well at 578 nm was then measured using a Tecan
spectrophotometer (Sunrise, Canada), and the absorbance of sam-
ples with no iP was subtracted. Compounds were tested in two
repetitions and the entire test was repeated at least twice.
Supplementary data associated with this article can be found, in
References and notes
1. Spíchal, L.; Rakova, N. Y.; Fiedler, M.; Mizuno, T.; Romanov, G. A.; Strnad, M.;
4.4.1. Bacterial receptor assay
Schmülling, T. Plant Cell Physiol. 2004, 45, 1299–1305.
Transformed Escherichia coli KMI001 strains harbouring the
plasmids pIN-III-AHK4 and pSTV28-AHK3, which, respectively, ex-
press the cytokinin receptors CRE1/AHK4 and AHK328,29 were used
in bacterial cytokinin assays as described elsewhere.2 Relative acti-
vation of cytokinin receptors was determined by measuring
b-galactosidase activity using the fluorescent substrate 4-methyl-
umbelliferyl-b-D-galactoside and monitoring the culture density
at OD600. The test was performed in three repetitions and the entire
test was repeated at least twice.
ˇ
2. Dolezal, K.; Popa, I.; Kryštof, V.; Spíchal, L.; Fojtíková, M.; Holub, J.; Lenobel, R.;
Schmülling, T.; Strnad, M. Bioorg. Med. Chem. 2006, 14, 875–884.
3. Frebortova, J.; Galuska, P.; Werner, T.; Schmuelling, T.; Frebort, I. Biol. Plant.
2007, 51, 673–682.
4. Werner, T.; Motyka, V.; Strnad, M.; Schmülling, T. Proc. Natl. Acad. Sci. U.S.A.
2001, 98, 10487–10492.
5. Thompson, R. D.; Sekunda, S.; Daly, J. W.; Olson, R. A. J. Med. Chem. 1991, 34,
2877–2882.
6. Daly, J. W.; Christensen, B. E. J. Org. Chem. 1956, 21, 177–179.
7. Elion, G. B.; Burgi, E.; Hitchings, G. H. J. Am. Chem. Soc. 1952, 74, 411–414.
8. Fiorini, M. T.; Abel, C. Tetrahedron Lett. 1998, 39, 1827–1830.
9. Imbach, P.; Capraro, H. G.; Furet, P.; Mett, H.; Meyer, T.; Zimmermann, J. Bioorg.
Med. Chem. Lett. 1999, 9, 91–96.
4.4.2. Cytokinin bioassays
10. Schow, S. R.; Mackman, R. L.; Blum, C. L.; Brooks, E.; Horsma, A. G. Bioorg. Med.
Chem. Lett. 1997, 7, 2697–2702.
Standard bioassays based on stimulation of cytokinin-depen-
dent tobacco callus growth, the retention of chlorophyll in ex-
cised wheat leaves and the dark induction of betacyanin
synthesis in Amaranthus cotyledons were carried out as previ-
ously described.30 The only exception to the published protocols
was that the tobacco callus bioassay was performed in 6-well
microtiter plates (3 mL of MS medium in each well). Prior to test-
ing, stock solutions of 6-benzylaminopurine (BAP) and tested
compounds in DMSO were prepared and further diluted as re-
quired in the media used for each biotest. The final concentration
of DMSO in the media did not exceed 0.2%. Five replicates were
prepared for each cytokinin concentration and the entire tests
were repeated at least three times. From the data acquired in
these tests the concentration inducing the strongest biological re-
sponse and the relative activity at this concentration of each com-
pound were calculated (Table 4). The activity of BAP at the
optimal concentration was set at 100 and the activities of the
tested compounds were related to it. The optimal BAP concentra-
tions used for these calculations were 10À5, 10À4 and 10À6 M for
the Amaranthus betacyanin, senescence and tobacco callus bioas-
says, respectively.
11. Legraverend, M.; Tunnah, P.; Noble, M.; Ducrot, P.; Ludwig, O.; Grierson, D. S.;
Leost, M.; Meijer, L.; Endicott, J. J. Med. Chem. 2000, 43, 1282–1292.
12. Qu, Q.; Han, S.; Zhang, Z.; Geng, M.; Xue, F. Can. J. Chem. 2006, 84, 819–824.
13. Chatfield, J. M.; Armstrong, D. J. Plant Physiol. 1986, 80, 493–499.
14. Kuraishi, S. Bull. Chem. Soc. Jpn. 1959, 32, 67–104.
15. Matsubara, S. Phytochemistry 1980, 19, 2239–2253.
ˇ
16. Kamínek, M.; Vanek, T.; Motyka, V. J. Plant Growth Regul. 1987, 6, 147–157.
17. Matsubara, S. Crit. Rev. Plant Sci. 1990, 9, 17–57.
ˇ
18. Dolezal, K.; Popa, I.; Hauserová, E.; Spíchal, L.; Chakrabarty, K.; Novák, O.;
Kryštof, V.; Voller, J.; Holub, J.; Strnad, M. Bioorg. Med. Chem. 2007, 15, 3737–
3747.
19. Nugiel, D. A.; Cornelius, L. A. M.; Corbett, J. W. J. Org. Chem. 1997, 62,
201–203.
20. Qu, G.; Han, S.; Zhang, Z.; Geng, M.; Xue, F. Can. J. Chem. 2006, 84, 819–824.
21. (a) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852–860; (b) Muci, A. R.; Buchwald, S.
L. Top. Curr. Chem. 2002, 219, 131–209.
22. Brach, J. W.; Kim, H. O.; Neony, L.; Nampalli, S.; Islam, Q. J. Org. Chem. 1992, 57,
3887–3894.
23. Kim, H. S.; Ohno, M.; Xu, B.; Kim, H. O.; Choi, Y. S.; Ji, X. D.; Maddileti, S.;
Marquez, V. E.; Harden, T. K.; Jacobson, K. A. J. Med. Chem. 2003, 46, 4974–
4987.
24. Rodenko, B.; Koch, M.; van der Burg, A. M.; Wanner, M. J.; Koomen, G. J. J. Am.
Chem. Soc. 2005, 127, 5957–5963.
25. Parker, Ch.; Entsch, B.; Letham, D. S. Phytochemistry 1986, 25, 303–310.
ˇ
ˇ
26. Otyepka, M.; Kryštof, V.; Havlícek, L.; Strnad, M.; Koca, J. J. Med. Chem. 2000, 43,
2506–2513.
ˇ
27. Frebort, I.; Šebela, M.; Galuska, P.; Werner, T.; Schmülling, T.; Pec, P. Anal.
Biochem. 2002, 306, 1–7.
Acknowledgements
28. Yamada, H.; Suzuki, T.; Terada, K.; Takei, K.; Ishikawa, K.; Miwa, K.; Yamashino,
T.; Mizuno, T. Plant Cell Physiol. 2001, 42, 1017–1023.
29. Suzuki, T.; Miwa, K.; Ishikawa, K.; Yamada, H.; Aiba, H.; Mizuno, T. Plant Cell
Physiol. 2001, 42, 107–113.
30. Holub, J.; Hanuš, J.; Hanke, D. E.; Strnad, M. Plant Growth Regul. 1998, 26,
109–115.
This work was supported by the Grant Agency of the Czech
Republic (GA 206/07/0570, GA 522/06/0108) and Czech Ministry
of Education (MSM 6198959216, 1M0630, LC06034).