5136
M. Yoshida et al. / Tetrahedron Letters 51 (2010) 5134–5136
Science) from the Ministry of Education, Culture, Sports, Science
O
and technology, Japan.
H2O
O
H
Supplementary data
2a
O
S
H
Supplementary data associated with this article can be found, in
CO2H
NH2
N
Ph3CS
1f
O
References and notes
1. Review on asymmetric thio-Michael addition: Enders, D.; Lüttgen, K.; Narine, A.
A. Synthesis 2007, 959.
SCH2Ph
PhCH2SH
3a
2. Pineering works on thio-Michael addition using an amine catalyst: (a) Helder,
R.; Arends, R.; Bolt, W.; Hiemstra, H.; Wynberg, H. Tetrahedron Lett. 1977, 25,
2181; (b) Pracejus, H.; Wilcke, F.-W.; Hanemann, K. J. Prakt. Chem. 1977, 319,
219; (c) Hiemstra, H.; Wynberg, H. J. Am. Chem. Soc. 1981, 103, 417.
3. Greene’s Protective Groups in Organic Synthesis; Wuts, P. G. M., Greene, T. W.,
Eds., 4th ed.; Wiley-Interscience: New Jersey, 2007.
O
H
O
H2O
S
H
N
4. Asymmetric thio-Michael addition of benzyl mercaptan to cyclic enones with
an organometallic catalyst: (a) Ba˘doiu, A.; Bernardinelli, G.; Besnard, C.;
Kündig, E. P. Org. Biomol. Chem. 2010, 8, 193; (b) Prabagaran, N.; Abraham, S.;
Sundararajan, G. ARKIVOC 2002, vii, 212; (c) Sundararajan, G.; Prabagaran, N.
Org. Lett. 2001, 3, 389; (d) Saito, M.; Nakajima, M.; Hashimoto, S. Tetrahedron
2000, 56, 9589; (e) Emori, E.; Arai, T.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc.
1998, 120, 4043.
SCH2Ph
Scheme 2. Plausible reaction mechanism.
5. Asymmetric thio-Michael addition of benzyl mercaptan to acyclic enones or
enals with an organic catalyst: (a) Liu, Y.; Sun, B.; Wang, B.; Wakem, M.; Deng,
L. J. Am. Chem. Soc. 2009, 131, 418; (b) Scafato, P.; Colangelo, A.; Rosini, C.
Chirality 2009, 21, 176; (c) Ricci, P.; Carlone, A.; Bartoli, G.; Bosco, M.; Sambri,
L.; Melchiorre, P. Adv. Synth. Catal. 2008, 350, 49; (d) Ishino, T.; Oriyama, T.
Chem. Lett. 2007, 36, 550; (e) Marigo, M.; Schulte, T.; Franzén, J.; Jørgensen, K. A.
and better selectivity than that of triphenylmethyl mercaptan
(Table 4, entries 8 and 9).
A plausible reaction mechanism for the thio-Michael addition of
benzyl mercaptan with 2a using the catalyst 1f is depicted in
Scheme 2.7,11 The primary amino acid catalyst 1f reacted with 2a
_
J. Am. Chem. Soc. 2005, 127, 15710; (f) Skarzewski, J.; Zielin´ ska-Błajet, M.;
Turowska-Tyrk, I. Tetrahedron: Asymmetry 2001, 12, 1923.
6. Asymmetric thio-Michael addition of benzyl mercaptan to cyclic enones with
an organic catalyst: (a) McDaid, P.; Chen, Y.; Deng, L. Angew. Chem., Int. Ed.
2002, 41, 338; (b) Shirakawa, S.; Kimura, T.; Murata, S.; Shimizu, S. J. Org. Chem.
2009, 74, 1289; (c) Suzuki, K.; Ikegawa, A.; Mukaiyama, T. Bull. Chem. Soc. Jpn.
1982, 55, 3277.
to give an a,b-unsaturated imine. Although (E)- and (Z)-stereoiso-
mers can be formed, a relatively bulky methylene group comes to
the less-hindered side rather than the vinyl group. The carboxyl
group coordinates with the nitrogen atom of imine by hydrogen
bonding to reduce the electron density of the b-carbon and to hold
the side chain of the amino acid on the Re-face of the imine. There-
fore, benzyl mercaptan attacks from the Si-face of the imine to give
(S)-Michael adduct 3a predominantly.
7. Yoshida, M.; Narita, M.; Hirama, K.; Hara, S. Tetrahedron Lett. 2009, 50, 7297.
8. The catalytic use of amino acid alkaline metal salts was first reported by
Yamaguchi’s group: (a) Yamaguchi, M.; Yokota, N.; Minami, T. J. Chem. Soc.,
Chem. Commun. 1991, 1088; (b) Yamaguchi, M.; Shiraishi, T.; Hirama, M. J. Org.
Chem. 1996, 61, 3520; (c) Yamaguchi, M.; Shiraishi, T.; Hirama, M. Angew.
Chem., Int. Ed. Engl. 1993, 32, 1176; (d) Li, P.; Yamamoto, H. Chem. Commun.
2009, 5412; (e) Xiong, Y.; Wen, Y.; Wang, F.; Gao, B.; Liu, X.; Huang, X.; Feng, X.
Adv. Synth. Catal. 2007, 349, 2156; (f) Renzi, P.; Overgaard, J.; Bella, M. Org.
Biomol. Chem. 2010, 8, 980; (g) Sato, A.; Yoshida, M.; Hara, S. Chem. Commun.
2008, 6242; (h) Yoshida, M.; Sato, A.; Hara, S. Org. Biomol. Chem. 2010, 8, 3031.
9. TLC tracing of the reaction indicated that the thio-Michael addition using
catalyst 1 proceeded cleanly to give the desired Michael adduct 3 and no major
by-products were produced.
10. DMSO will act as a weak Lewis base to dissolve an amino acid in the reaction
media and to activate a mercaptan moderately. The use of a sulfoxide as a
Lewis base was well studied by Kobayashi et al.: Kobayashi, S.; Ogawa, C.;
Konishi, H.; Sugiura, M. J. Am. Chem. Soc. 2003, 125, 6610.
11. For reviews on organocatalysis using a primary amines, see: (a) Xu, L.-W.; Luo,
J.; Lu, Y. Chem. Commun. 2009, 1807; (b) Xu, L.-W.; Lu, Y. Org. Biomol. Chem.
2008, 6, 2047; (c) Chen, Y.-C. Synlett 2008, 1919.
In summary, we found that a simple and commercially available
primary amino acid, S-triphenylmethyl L-cysteine (1f), promoted
the thio-Michael addition of arylmethyl mercaptans to cyclic enon-
es with fair to high enantioselectivity. To the best of our knowl-
edge, this is the most successful report among the reported
organocatalytic asymmetric thio-Michael additions of benzyl mer-
captan to cyclic enones.
Acknowledgment
This work was partly supported by the Global COE Program
(Project No. B01: Catalysis as the Basis for Innovation in Materials