374
LETTERS
SYNLETT
Marquess, D. G.; McGrane, P. L.; Meng, W.; Natchus, M. G.; Shuker,
A. J.; Sutton, J. C.; Taylor, R. E. J. Am. Chem. Soc. 1997, 119, 2757-
2758. (e) Mukaiyama, T.; Shiina, I.; Iwadare, H.; Sakoh, H.; Tani, Y.;
Hasegawa, M.; Saitoh, K. Proc. Japan Acad. 1997, 73, Ser. B, 95-100.
The cyclization reaction of 15 was the most crucial step in this
synthesis; thus, simple addition of Lewis acid in dichloromethane as
solvent provided very poor yield of 17. A variety of possible conditions
for this cyclization were examined; e.g. usage of a resin (Amberlyst
15E) having strong protonic acid nature and diluted conditions afforded
the cyclized product 17 in 58 % yield, but poor reproducibility. Finally
(5) Preparation of starting material
8, 9 and 10:
(a) A-ring 8 was synthesized from mono ketal of 2,2-dimethyl 1,3-
cyclohexadione in 4 steps.
we found that careful addition of BF •OEt into a 0.001M solution of
3
2
10
16 in dichloromethane at -78 °C and then warmed to 0 °C for 40 min
11
afforded 17 in 43 % yield with reproducibility. Decomplexation of the
product 17 was achieved by heating its solution containing n-Bu SnH
3
12
and a catalytic amount of NBS in 1,4-cyclohexadiene at 39 °C for 2 h.
13
The product 18 as isolated in 40-45% yield.
(i) H2NNHTs / MeOH, 87 %; (ii) n-BuLi, n-Bu3SnCl / THF-TMEDA
(5:1); (iii) I2 / Et2O, 77 % in 2 steps; (iv) 3N HCl-THF (1:1), 97 %.
(b) Allylic alcohol 9 was synthesized from metyhl vinyl ketone in 4
steps.
(i) Me3Si-≡-Li / THF, 31 %; (ii) K2CO3 / MeOH; (iii) 10 % H2SO4; (iv)
TBSCl, imidazole / DMF, 53 % in 3 steps.
(c) Terminal acetylene 10 was synthesized from 2,3-dibromopropene in
3 steps.
As a summary we examined two cyclization reactions for the desmethyl
carbon framework of taxachitrienes, and only one of the two routes
exhibited
a reasonable result in the 12-membered cyclization.
Decomplexation of the biscobalthexacarbonyl was achieved under new
condition to provide the tetra-ene-yne bicyclo[9.3.1]pentadecatriene.
Overall reaction from 8 to 18 was 13 % in 8 steps.
(i) Me3SiLi, CuI / HMPA, 42 %; (ii) Me3Si-≡-H, Pd(OAc)2, Ph3P, CuI,
n-BuNH2 / THF, 95 %; (iii) K2CO3 / MeOH, 93 %.
Acknowledgement This research was financially supported by a Grant-
In-Aids for Scientific Research from the Ministry of Education,
Science, Sports and Culture and by JSPS-RFTF. S. S. is grateful to JSPS
for a Research Fellowships for Young Scientists. Special thanks are due
to Mr. S. Kitamura in Nagoya University for the measurement of
elemental analysis and high resolution mass spectra.
(6) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467-
4470.
(7) (a) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207-214., and references
cited therein. (b) Schreiber, S. L.; Sammakia, T.; Crowe, W. E. J. Am.
Chem. Soc. 1986, 108, 3128-3130. (c) Nakamura, T.; Matsui, T.;
Tanino, K.; Kuwajima, I.
. , , 3032-3033.
J. Org. Chem 1997 62
(d) Hosomi, S. Acc. Chem. Res. 1988, 21, 200-206.
(8) Our laboratory reported polyether syntheses using acetylene
biscobalthexacarbonyl as key intermediates. (a) Isobe, M.; Yenjai, C.;
Tanaka, S. Synlett, 1994, 916-918. (b) Hosokawa, S.; Isobe, M. Synlett,
1995, 1178-1179. (c) Hosokawa, S.; Isobe, M. Synlett, 1996, 351-352.
(d) Isobe, M.; Hosokawa, S.; Kira, K. Chem. Lett. 1996, 473-474.
References and Notes
(1) (a) Fang, W.-S.; Fang, Q.-C.; Liang, X.-T.; Lu, Y.; Zheng, Q.-T.
Tetrahedron 1995, 51, 8483-8490. (b) Fang, W.-S.; Fang, Q.-C.; Liang,
X.-T. Planta Med., 1996, 62, 567-569.
(2) (a) Zamir, L. O.; Zhou, Z. H.; Caron, G.; Nedea, M. E.; Sauriol, F.;
Mamer, O. J. Chem. Soc., Chem. Commun. 1995, 529-530.
(b) Boulanger, Y.; Khiat, A.; Zhou, Z.-H.; Caron, G.; Zamir, L. O.
Tetrahedron 1996, 52, 8957-8968.
(9) When a methyl group was present on the olefin of the 6-membered ring,
the cobalt complex did not form at this position.
(10) Precursor 16 was synthesized from TBS ether of 14 in 3 steps.
(i) Amberlyst 15E / MeOH, 83 %; (ii) Ac2O, pyridine, 93 %;
(iii) Co2(CO)8 / CH2Cl2, quant.
(3) Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T.
J. Am. Chem. Soc. 1971, 93, 2325-2327.
(11) Hosokawa, S.; Isobe, M. Tetrahedron Lett. submitted for publication.
(4) (a) Holton, R. A.; Somoza, C.; Kim, H.-B.; Liang, F.; Biediger, R. J.;
Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S.; Nadizadeh, H.;
Suzuki, Y.; Tao, C.; Vu, P.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc.
1994, 116, 1597-1598. Holton, R. A.; Kim, H.-B.; Sozoma, C.; Liang,
F.; Biediger, R. J.; Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S.;
Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Gentile, L. N.; Liu, J. H.
ibid. 1994, 116, 1599-1600. (b) Nicolaou, K. C.; Yang, Z.; Liu, J. J.;
Ueno, H.; Nantermet, P. G.; Guy, R. K.; Claiborne, C. F.; Renaud, J.;
Couladouros, E. A.; Paulvannan, K.; Sorensen, E. J. Nature, 1994, 367,
630-634. (c) Masters, J. J.; Link, J. T.; Snyder, L. B.; Young, W. B.;
Danishefsky, S. J. Angew. Chem. Int. Ed. Engl. 1995, 34, 1723-1726.
(d) Wender, P. A.; Badham, N. F.; Conway, S. P.; Floreancig, P. E.;
Glass, T. E.; Gränicher, C.; Houze, J. B.; Jänichen, J.; Lee, D.;
Marquess, D. G.; McGrane, P. L.; Meng, W.; Mucciaro, T. P.;
Mühlebach, M.; Natchus, M. G.; Paulsen, H.; Rawlins, D. B.; Satkofsky,
J.; Shuker, A. J.; Sutton, J. C.; Taylor, R. E.; Tomooka, K. J. Am. Chem.
Soc. 1997, 119, 2755-2756. Wender, P. A.; Badham, N. F.; Conway, S.
P.; Floreancig, P. E.; Glass, T. E.; Houze, J. B.; Krauss, N. E.; Lee, D.;
(12) In previous report (ref.11), we used a large excess of n-Bu3SnH (10-12
equiv.) in benzene solvent at 65 °C for 2 h. NBS promoted this
decomplexation, which was effective to reduce the amount of n-Bu3SnH
and to lower the reaction temperature. We used 3 equiv. of n-Bu3SnH
and 0.2 equiv. of NBS.
(13) Compound 18: IR (KBr, film) νmax 2956, 2929, 2856, 1249 cm-1 1H
.
NMR (CDCl3, 400 MHz) δ 0.20 (3H, s, SiCH3), 0.22 (3H, s, SiCH3),
0.90 (9H, s, SiC(CH3)3), 1.11 (3H, s, C(CH3)2), 1.16 (3H, s, C(CH3)2),
1.64 (3H, d, J = 1.5 Hz, C(CH3)=CH), 1.71-1.79 (1H, m, CH2), 2.01-
2.18 (3H, m, CH2), 2.21-2.40 (4H, m, CH2 ×2), 5.19 (1H, d, J = 2.1 Hz,
C=CHH), 5.20 (1H, tq, J = 6.5, 1.5 Hz, C(CH3)=CH), 5.23 (1H, d, J =
2.1 Hz, C=CHH), 5.78 (1H, d, J = 11.5 Hz, CH=C-CH=CH), 5.83-5.93
(2H, m, CH=C-CH=CH). 13C NMR (CDCl3, 100 MHz) δ -3.1, -2.9,
17.0, 18.3, 21.9, 24.3, 24.8, 25.8, 29.8, 32.3, 38.4, 43.5, 74.2, 86.2, 93.4,
120.1, 122.5, 127.8, 128.9, 131.2, 132.4, 134.4, 142.0. MS (EI) m/z 382
(M+), 367 (M-15). HRMS (EI) calcd for C25H38OSi: 382.2692, found
382.2712.