COMMUNICATIONS
Gold-Catalyzed Redox Synthesis of ImidazoACHTNUTRGNEUNG[1,2-a]pyridines
alkyne (0.027 mL, 0.22 mmol) and PicAuCl2 (8.7 mg,
0.022 mmol) were added. After stirring overnight at 408C,
Et3N (20 mL) was added and the reaction mixture was con-
centrated under reduced pressure and purified by column
Andrei, O. Chavignon, J. C. Teulade, A. Kerbal, E. M.
Essassi, J. C. Debouzy, M. Witvrouw, Y. Blache, J. Bal-
zarini, E. De Clercq, J. P. Chapat, J. Med. Chem. 1996,
39, 2856–2859; c) A. Gueiffier, S. Mavel, M. Lhassani,
A. Elhakmaoui, R. Snoeck, G. Andrei, O. Chavignon,
J. C. Teulade, M. Witvrouw, J. Balzarini, E. De Clercq,
J. P. Chapat, J. Med. Chem. 1998, 41, 5108–5112;
d) E. S. Hand, W. W. Paudler, J. Org. Chem. 1978, 43,
2900–2906.
chromatography to give pure imidazo
yield: 36.2 mg (72%).
ACHTUNGTREN[NUGN 1,2-a]pyridine 2;
Acknowledgements
[11] a) E. F. DiMauro, J. M. Kennedy, J. Org. Chem. 2007,
72, 1013–1016; b) A. L. Rousseau, P. Matlab, C. J. Par-
kinson, Tetrahedron Lett. 2007, 48, 4079–4082; c) K.
Groebke, L. Weber, F. Mehlin, Synlett 1998, 661–663;
d) M. Adib, E. Sheikhi, N. Rezaei, Tetrahedron Lett.
2011, 52, 3191–3194.
[12] a) S. K. Guchhait, A. L. Chandgude, G. Priyadarshani,
J. Org. Chem. 2012, 77, 4438–4444; b) N. Chernyak, V.
Gevorgyan, Angew. Chem. 2010, 122, 2803–2806;
Angew. Chem. Int. Ed. 2010, 49, 2743–2746; c) S.
Mishra, R. Ghosh, Synthesis 2011, 3463–3470;
d) B. V. S. Reddy, P. S. Reddy, Y. J. Reddy, J. S. Yadav,
Tetrahedron Lett. 2011, 52, 5789–5793; e) P. Liu, L. S.
Fang, X. Lei, G. Q. Lin, Tetrahedron Lett. 2010, 51,
4605–4608.
We are grateful to H. Douglas for analytical support. The au-
thors thank the Novartis Education, Diversity and Inclusion
(ED&I) office for a presidential postdoctoral fellowship
(E.P.A.T.) and summer student funding (M. R.). F.D.T.
thanks NIHGMS (RO1 GM073932) for financial support.
References
[1] a) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2007,
129, 4160–4161; b) C. A. Witham, P. Mauleon, N. D.
Shapiro, B. D. Sherry, F. D. Toste, J. Am. Chem. Soc.
2007, 129, 5838–5839.
[2] a) L. Ye, L. Cui, G. Zhang, L. Zhang, J. Am. Chem.
Soc. 2010, 132, 3258–3259; b) L. Ye, W. He, L. Zhang,
J. Am. Chem. Soc. 2010, 132, 8550–8551; c) W. He, C.
Li, L. Zhang, J. Am. Chem. Soc. 2011, 133, 8482–8485.
[3] J. Xiao, X. Li, Angew. Chem. 2011, 123, 7364–7375;
Angew. Chem. Int. Ed. 2011, 50, 7226–7236, and refer-
ences cited therein.
[4] a) B. M. Trost, Angew. Chem. 1995, 107, 285–307;
Angew. Chem. Int. Ed. Engl. 1995, 34, 259–281;
b) R. A. Sheldon, Pure Appl. Chem. 2000, 72, 1233–
1246.
[5] For other approaches of “waste-free” carbene genera-
tion using gold, see: a) M. J. Johansson, D. J. Gorin,
F. D. Toste, J. Am. Chem. Soc. 2005, 127, 18002; b) H.-
S. Yeom, J.-E. Lee, S. Shin, Angew. Chem. 2008, 120,
7148–7151; Angew. Chem. Int. Ed. 2008, 47, 7040–7043;
c) H.-S. Yeom, Y. Lee, J. Jeong, E. So, S. Hwang, J.-E.
Lee, S. S. Lee, S. Shin, Angew. Chem. 2010, 122, 1655–
1658; Angew. Chem. Int. Ed. 2010, 49, 1611–1614; d) J.
Jeong, H.-S. Yeom, O. Kwon, S. Shin, Chem. Asian J.
2011, 6, 1977–1981; e) M. Murai, S. Kitabata, K. Oka-
moto, K. Ohe, Chem. Commun. 2012, 48, 7622–7624;
f) H.-S. Yeom, Y. Lee, J.-E. Lee, S. Shin, Org. Biomol.
Chem. 2009, 7, 4744–4752; g) A. Mukherjee, R. B.
Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad, R.-S. Liu
J. Am. Chem. Soc. 2011, 133, 15372–15375.
[13] Z.-J. Cai, S.-Y. Wang, S.-J. Ji, Adv. Synth. Catal. 2013,
355, 2686–2692.
[14] Y. Goa, M. Yin, W. Wu, H. Huang, H. Jiang, Adv.
Synth. Catal. 2013, 355, 2263–2273.
[15] A. K. Bagdi, M. Rahman, S. Soutra, A. Majee, A.
Hajra, Adv. Synth. Catal. 2013, 355, 1741–1747.
[16] S. Santra, A. K. Bagdi, A. Majee, A. Hajra, Adv. Synth.
Catal. 2013, 355, 1065–1070.
[17] C. He, J. Hoa, H. Xu, Y. Mo, H. Liu, J. Han, A. Lei,
Chem. Commun. 2012, 48, 11073–11075.
[18] N. Z. Burns, P. S. Baran, R. W. Hoffman, Angew. Chem.
2009, 121, 2896–2910; Angew. Chem. Int. Ed. 2009, 48,
2854–2867.
[19] Scifinder identified 74218 commercially available al-
kynes compared with a figure of just less than 6200 for
commercially available a-bromo or a-chloro ketones.
Date of the search: 14th of October 2013.
[20] a) D.-F. Chen, Z.-Y Han, Y. P. He, J. Yu, L.-Z. Ging,
Angew. Chem. 2012, 124, 12473–12476; Angew. Chem.
Int. Ed. 2012, 51, 12307–12310; b) K. Graf, C. L. Rꢁhl,
M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew.
Chem. 2013, 125, 12960–12964; Angew. Chem. Int. Ed.
2013, 52, 12727–12731.
[21] Formation of the desired product was also observed
with EtOAc, THF and nitromethane in moderate yield.
[22] Other catalysts were tested such as PtCl2, CuOTf2,
CuOTf without success.
[23] Diphenylacetylene and diethylacetylene were used
without success.
[24] D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang,
W. A. Goddard, F. D. Toste, Nature Chem. 2009, 1,
482–486.
[25] W. He, L. Xie, Y. Xu, J. Xiang, L. Zhang, Org. Biomol.
Chem. 2012, 10, 3168–3171.
[26] E. L. Noey; Y. Luo, L. Zhang, K. N. Houk, J. Am.
[6] Y. Rival, G. Grassy, G. Michel, Chem. Pharm. Bull.
1992, 40, 1170–1176.
[7] M. H. Fisher, A. Lusi, J. Med. Chem. 1972, 15, 982–985.
[8] C. Hamdouchi, J. de Blas, M. del Prado, J. Gruber,
B. A. Heinz, L. Vance, J. Med. Chem. 1999, 42, 50–59.
[9] K. C. Rupert, J. R. Henry, J. H. Dodd, S. A. Wadsworth,
D. E. Cavender, G. C. Olini, B. Fahmy, J. J. Siekierka,
Bioorg. Med. Chem. Lett. 2003, 13, 347–350.
[10] a) A. J. Stasyuk, M. Banasiewicz, M. K. Cyranski, D. T.
Gryko, J. Org. Chem. 2012, 77, 5552–5558; b) A.
Gueiffier, M. Lhassani, A. Elhakmaoui, R. Snoeck, G.
Chem. Soc. 2012, 134, 1078–1084.
Adv. Synth. Catal. 2014, 356, 687 – 691
ꢀ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
691