7814
J. Am. Chem. Soc. 1999, 121, 7814-7821
Efficient Total Syntheses of Resin Glycosides and Analogues by
Ring-Closing Olefin Metathesis
Alois Fu1rstner* and Thomas Mu1ller
Contribution from the Max-Planck-Institut fu¨r Kohlenforschung, Kaiser-Wilhelm-Platz 1,
D-45470 Mu¨lheim/Ruhr, Germany
ReceiVed April 26, 1999
Abstract: A highly efficient entry into the resin glycoside family of natural products is outlined which takes
advantage of the inherently modular character of ring-closing metathesis (RCM) for the formation of their
macrolactone substructures. Starting from only three well accessible sugar building blocks and (6S)-undec-
1-en-6-ol (7) (prepared by enantioselective addition of dipentylzinc to hexenal in the presence of a catalyst
formed from Ti(OiPr)4 and bis-(R,R)-trifluoromethanesulfonamide (9)), it was possible to achieve total syntheses
of tricolorin A (1), tricolorin G (2), and jalapinolic acid (58) as well as the synthesis of the disaccharidic unit
48 which constitutes a common structural motif of all simonin, operculin, tuguajalapin, orizabin, mammoside,
quamoclin, and stoloniferin resin glycosides. Furthermore, various analogues of these naturally occurring
glycolipids have been obtained in a straightforward manner from the same set of substrates. This highlights
the flexibility of the chosen approach and opens the door for a synthesis-driven mapping of the structure/
activity profile of this structurally demanding class of oligosaccharides. The macrocyclization reactions via
RCM have been performed using carbene 22 introduced by Grubbs, the cationic allenylidene complex 23, or
the particularly convenient precatalyst [(p-cymene)RuCl2(PCy3)] 24. All these ruthenium-based systems catalyze
the ring closure of the highly functionalized diene substrates with comparable efficiency and turned out to be
compatible with an array of functional groups including unprotected secondary hydroxyl functions.
Introduction
characteristic structural motif, resin glycosides are rich in deoxy
sugars, particularly D-fucose, L-rhamnose, and D-quinovose, with
L-Rhap-(1f2)-D-Fuc, L-Rhap-L-Rha and D-Glcp-(1f2)-D-Fuc
representing highly conserved disaccharidic subunits.
Although the biological properties of resin glycosides have
not yet been fully assessed, a closer look into this class of natural
products seems highly promising in view of the existing data
on the use of glycolipids in general for the treatment of severe
immune disorders.12 The fact that many of them are isolated
from plants which are essential ingredients of traditional
Chemical investigations on resin glycosides were initiated
as early as the middle of the 19th century.1 Until the advent of
modern spectroscopy, however, it was impossible for chemists
to deduce the amazingly complex but aesthetically most
appealing structures of the individual members of this family
of glycolipids. All of them contain jalapinolic acid (11(S)-
hydroxyhexadecanoic acid) as the aglycon which is usually tied
back to form a macrolactone ring spanning two or more units
of their saccharide backbones.2-11 In addition to this very
(10) Quamoclins: Ono, M.; Kuwabata, K.; Kawasaki, T.; Miyahara, K.
Chem. Pharm. Bull. 1992, 40, 2674.
(1) (a) Johnston, J. F. W. Philos. Trans. 1840, 342. (b) Kayser, G. A.
Justus Liebigs Ann. Chem. 1844, 51, 81. (c) Mayer, W. Justus Liebigs Ann.
Chem. 1855, 95, 129. (d) Power, F. B.; Rogerson, H. J. Chem. Soc. Trans.
1912, 101, 1. (e) Mannich, C.; Schumann, P. Arch. Pharm. Ber. Dtsch.
Pharm. Ges. 1938, 276, 221.
(2) Tricolorin family: (a) Pereda-Miranda, R.; Mata, R.; Anaya, A. L.;
Wickramaratne, M.; Pezzuto, J. M.; Kinghorn, A. D. J. Nat. Prod. 1993,
56, 571. (b) Bah, M.; Pereda-Miranda, R. Tetrahedron 1996, 52, 13063.
(c) Bah, M.; Pereda-Miranda, R. Tetrahedron 1997, 53, 9007.
(3) Simonins: Noda, N.; Yoda, S.; Kawasaki, T.; Miyahara, Y. Chem.
Pharm. Bull. 1992, 40, 3163.
(4) Orizabins: Noda, N.; Ono, M.; Miyahara, K.; Kawasaki, T.; Okabe,
M. Tetrahedron 1987, 43, 3889.
(5) Multifidins: Ono, N.; Honda, F.; Karahashi, A.; Kawasaki, T.;
Miyahara, K. Chem. Pharm. Bull. 1997, 45, 1955.
(6) Stoloniferins: (a) Noda, N.; Takahashi, N.; Miyahara, K.; Yang, C.-
R. Phytochemistry 1998, 48, 837. (b) Noda, N.; Takahashi, N.; Kawasaki,
T.; Miyahara, K.; Yang, C.-R. Phytochemistry 1994, 36, 365.
(7) Operculins: (a) Ono, M.; Nishi, M.; Kawasaki, T.; Miyahara, K.
Chem. Pharm. Bull. 1990, 38, 2986. (b) Ono, M.; Fukunaga, T.; Kawasaki,
T.; Miyahara, K. Chem. Pharm. Bull. 1990, 38, 2650.
(11) For yet other families of resin glycosides see the following for
leading references: (a) MacLeod, J. K.; Ward, A.; Oelrichs, P. B. J. Nat.
Prod. 1997, 60, 467. (b) Kitagawa, I.; Baek, N. I.; Kawashima, K.;
Yokokawa, Y.; Yoshikawa, M.; Ohashi, K.; Shibuya, H. Chem. Pharm.
Bull. 1996, 44, 1680. (c) Noda, N.; Tsuji, K.; Kawasaki, T.; Miyahara, K.;
Hanazono, H.; Yang, C.-R. Chem. Pharm. Bull. 1995, 43, 1061. (d) Noda,
N.; Kobayashi, H.; Miyahara, K.; Kawasaki, T. Chem. Pharm. Bull. 1988,
36, 920. (e) Kitagawa, I.; Baek, N. I.; Yokokawa, Y.; Yoshikawa, M.;
Ohashi, K.; Shibuya, H. Chem. Pharm. Bull. 1996, 44, 1693. (f) Fang, Y.-
W.; Chai, W.-R.; Chen, S.-M.; He, Y.-Z.; Zhao, L.; Peng, J.-H.; Huang,
H.-W.; Xin, B. Carbohydr. Res. 1993, 245, 259.
(12) Although most resin glycosides have been isolated from plants
(ConVolVulaceae), scattered reports on the isolation of related glycolipids
from bacteria, fungi, and yeasts can be found in the literature, some of
which contain fatty acid components other than jalapinolic acid as the
aglycon. For an extensive compilation of relevant literature on the isolation,
structure, and biological properties of such glycolipids see the following
for leading references: (a) Bisht, K. S.; Gross, R. A.; Kaplan, D. L. J.
Org. Chem. 1999, 64, 780. (b) See also: Legler, G. Phytochemistry 1965,
4, 29. (c) Wagner, H.; Kazmaier, P. Tetrahedron Lett. 1971, 12, 3233. (d)
Kawasaki, T.; Okabe, H.; Nakatsuka, I. Chem. Pharm. Bull. 1971, 19, 1144
and literature cited therein. (e) Key, B. A.; Gray, G. W.; Wilkinson, S. G.
Biochem. J. 1970, 13, 593. (f) Hirayama, T.; Kato, I. FEBS Lett. 1982,
139, 81. (g) Weber, L.; Stach, J.; Haufe, G.; Hommel, R.; Kleber, H.-P.
Carbohydr. Res. 1990, 206, 13. (h) Asmer, H. J.; Lang, S.; Wagner, F.;
Wray, V. J. Am. Oil Soc. 1988, 65, 1460.
(8) Tuguajalapins: Noda, N.; Tsuji, K.; Miyahara, K.; Yang, C.-R. Chem.
Pharm. Bull. 1994, 42, 2011.
(9) Mammosides: (a) Kitagawa, I.; Ohashi, K.; Baek, N. I.; Sakagami,
M.; Yoshikawa, M.; Shibuya, H. Chem. Pharm. Bull. 1997, 45, 786. (b)
Kitagawa, I.; Baek, N. I.; Ohashi, K.; Sakagami, M.; Yoshikawa, M.;
Shibuya, H. Chem. Pharm. Bull. 1989, 37, 1131.
10.1021/ja991361l CCC: $18.00 © 1999 American Chemical Society
Published on Web 08/10/1999