7256
W. Pan et al. / Tetrahedron 69 (2013) 7253e7257
122.13, 121.51, 121.46, 120.96, 120.16, 116.31, 110.31, 109.95, 74.97,
74.56, 60.67, 60.45, 32.03, 29.86.
in anhydrous CHCl3 at 27 ꢁC. The mixture was allowed to stir at the
same temperature for 4 h. The reaction was quenched with satu-
rated aqueous solution of NaHCO3 and was extracted with CH2Cl2.
The combined organic layers were washed with brine and dried
over anhydrous MgSO4 and the solvents were evaporated. Purifi-
cation by column chromatography (silica gel, hexane/EtOAc)
afforded pure amine 14. The ee% values were determined using
established HPLC techniques with chiral stationary phases.
4.2.5. 3,30-Bis[(1R,2S-2-acetoxyl-1,2-diphenylethyl)aminocarbonyl]-
9,90-dimethyl-9H,90H-1,10-bipyrido[3,4-b]indole-2-oxide
(8b). Following procedure to give 8a, starting from 11b, light yellow
powder 8b was obtained. MS-ESI, m/z 963 [MþNa]þ. HRMS-EI m/z
calcd for C58H48N6O7 [M]þ 940.3584, found 940.3519. [
a]
11 þ405.56
D
(c 0.36, CHCl3). 1H NMR (600 MHz, CDCl3)
d
9.30 (s, 1H, NH), 9.08 (s,
1H, NH), 8.44 (d, J¼9.1 Hz, 1H), 8.32 (d, J¼7.9 Hz, 1H), 8.26 (d,
J¼7.9 Hz, 1H), 7.74 (t, J¼7.7 Hz, 1H), 7.68 (t, J¼7.7 Hz, 1H), 7.55 (t,
J¼7.1 Hz, 1H), 7.45 (qd, J¼12.6, 8.7 Hz, 4H), 7.24e7.15 (m, 16H), 6.97
(d, J¼7.4 Hz, 3H), 6.92 (t, J¼7.4 Hz, 1H), 6.75 (t, J¼7.7 Hz, 2H), 6.22 (t,
J¼7.0 Hz, 1H, PhCHOH), 6.11 (d, J¼6.1 Hz, 1H, PhCHOH), 5.72 (td,
J¼9.3, 6.5 Hz, 2H, PhCHN), 3.53 (s, 3H, NCH3), 2.95 (s, 3H, NCH3), 1.88
(s, 3H, COCH3), 1.78 (s, 3H, COCH3). 13C NMR (151 MHz, CDCl3)
4.4.1. N-Phenyl-N-(1-phenylethyl)amine (14a). 1H NMR (400 MHz,
CDCl3)
d
7.45e7.28 (m, 17H), 7.22 (dd, J¼29.8, 22.9 Hz, 7H), 7.10 (d,
J¼7.4 Hz, 6H), 6.68 (t, J¼7.3 Hz, 4H), 6.55 (d, J¼7.8 Hz, 8H), 4.50 (q,
J¼6.7 Hz, 5H), 1.54 (d, J¼6.7 Hz, 13H). Enantiomeric excess was
determined by HPLC with a chiralcel OD-H column (hexane/2-
propanol¼98/2, 1 mL/min), tminor¼10.7 min; tmajor¼12.9 min, 93%
14
ee. [
a]
ꢀ13.5 (c 0.85, CH3OH).
D
d
169.87, 169.59, 163.92, 160.19, 144.01, 142.83, 138.68, 138.62, 137.84,
137.74, 137.32, 137.05, 136.09, 132.19, 131.81, 130.81, 130.08, 129.74,
129.29, 128.25, 128.19, 128.14, 127.98, 127.72, 127.33, 127.05, 122.91,
122.33, 122.24, 121.74, 121.29, 121.27, 121.15, 120.18, 116.26, 109.99,
109.83, 77.07, 76.85, 57.79, 56.55, 31.88, 29.75, 20.95, 20.79.
4.4.2. N-Phenyl-N-[1-(4-fluorophenyl)ethyl]amine (14b). 1H NMR
(400 MHz, CDCl3) 7.45e7.26 (m, 2H), 7.15e6.90 (m, 4H), 6.71 (t,
d
J¼7.3 Hz,1H), 6.55 (d, J¼7.8 Hz, 2H), 4.47 (dd, J¼13.4, 6.6 Hz, 1H), 1.53
(d, J¼6.7 Hz, 3H). Enantiomeric excess was determined by HPLC with
a chiralcel OD-H column (hexane/2-propanol¼98/2, 0.5 mL/min),
4.2.6. 2-[(1R,2S-2-Hydroxy-1,2-diphenylethyl)aminocarbonyl]pyridine
oxide(12). To a solution of picolinic acid and 1-hydroxybenzotriazole
(HOBT 1.1 equiv) in DMF kept under nitrogen at 0 ꢁC, DMF solution of
tminor¼19.9 min; tmajor¼22.7min, 95% ee. [
a
]
14 ꢀ17.1 (c 0.002, CH3OH).
D
4.4.3. N-Phenyl-N-[1-(4-chlorophenyl)ethyl]amine (14c). 1H NMR
(400 MHz, CDCl3)
1-[3-(dimethylamino)propyl]-3-ethylcarbodiimine
hydrochloride
d
7.45e7.28 (m,17H), 7.22 (dd, J¼29.8, 22.9 Hz, 7H),
(EDC$HCl, 1.1 equiv) was added, stirred for 0.5 h, then (1S,2R)-(þ)-2-
amino-1,2-diphenylethanol was added. The mixture was warmed to
room temperature and overnight, then quenched with ice water. The
precipitate was filtered, and washed with water. Dried in vacuum
oven. Light yellow powder can be obtained. The powder was dis-
solved in DCM, 8 equiv peroxide-urea, and 8 equiv TFA were added
7.10 (d, J¼7.4 Hz, 6H), 6.68 (t, J¼7.3 Hz, 4H), 6.55 (d, J¼7.8 Hz, 8H), 4.50
(q, J¼6.7 Hz, 5H), 1.54 (d, J¼6.7 Hz, 13H). Enantiomeric excess was
determined by HPLC with a chiralcel OD-H column (hexane/2-
propanol¼98/2, 0.5 mL/min), tminor¼26.3 min; tmajor¼29.6 min, 94%
ee. [
a
]
14 ꢀ12.1 (c 0.03, CH3OH).
D
and stirred at room temperature for 48 h. After silicon column
4.4.4. N-Phenyl-N-[1-(4-bromophenyl)ethyl)amine] (14d). 1H NMR
(400 MHz, CDCl3)
11
chromatography, 12 was obtained. [
a
]
þ52.63 (c 0.19, CHCl3) MS-
d
7.34 (d, J¼8.4 Hz, 2H), 7.16 (d, J¼8.2 Hz, 2H), 7.01
D
ESI, m/z 357 [MþNa]þ. HRMS-EI m/z calcd for C20H18N2O3 [M]þ
334.1317, found 334.1312. 1H NMR (600 MHz, CDCl3), 8.35e8.36 (d,
J¼2.1 Hz, 1H), 8.23e8.20 (m, 1H), 7.45e7.40 (m, 1H), 7.38e7.34 (m,
1H), 7.26e7.20 (m, 7H), 7.17e7.14 (m, 2H), 7.14e7.10 (m, 2H), 5.48 (dd,
J¼8.1, 4.9 Hz, 1H), 5.14 (d, J¼4.8 Hz, 1H). 13C NMR (151 MHz, CDCl3)
(t, J¼7.9 Hz, 2H), 6.59 (t, J¼7.3 Hz, 1H), 6.40 (d, J¼7.7 Hz, 2H), 4.34
(dd, J¼13.4, 6.7 Hz, 1H), 1.41 (d, J¼6.7 Hz, 3H). Enantiomeric excess
was determined by HPLC with a chiralcel OD-H column (hexane/2-
propanol¼95/5, 1 mL/min), tminor¼10.7 min; tmajor¼12.1 min, 90%
14
ee. [
a]
ꢀ17.1 (c 0.02, CH3OH).
D
d
159.56,140.73,140.64, 140.04, 137.27, 129.19,128.42,128.28,128.23,
128.10, 127.92, 127.73, 127.61, 126.94, 77.18, 60.57.
4.4.5. N-Phenyl-N-[1-(4-trifluoromethylphenyl)ethyl]amine
(14e). 1H NMR (400 MHz, CDCl3)
d
7.58 (s, 6H), 7.53 (dd, J¼29.2,
4.3. General procedure for preparation of imines
A mixture of NaHCO3 (50 mmol), and the corresponding amine
8.1 Hz, 29H), 7.28 (s, 2H), 7.15 (dd, J¼37.7, 29.8 Hz, 26H), 6.72 (t,
J¼7.3 Hz, 9H), 6.54 (d, J¼7.6 Hz, 16H), 4.53 (dd, J¼13.4, 6.7 Hz, 12H),
1.56 (d, J¼6.7 Hz, 35H). Enantiomeric excess was determined by HPLC
with a chiralcel OD-Hcolumn (hexane/2-propanol¼90/10,1 mL/min),
ꢀ
(10 mmol) and ketone (10 mmol) plus activated molecular 4 A sieves
(8.0g)inanhydrous toluene(10 mL)washeatedat80ꢁCfor12hunder
an argon atmosphere. The mixture was filtered through Celite. The
filtrate was then evaporated in vacuum and the product was crystal-
lized from appropriate solvents or purified by distillation to give pure
imine. Only the 1H NMR data of two new imines were listed here.
tminor¼8.7 min; tmajor¼9.8 min, 84% ee. [
a
]
14 ꢀ40 (c 0.015, CH3OH).
D
4.4.6. N-Phenyl-N-[1-(4-nitrophenyl)ethyl)amine] (14f). 1H NMR
(400 MHz, CDCl3)
d
8.18 (d, J¼8.7 Hz, 4H), 7.56 (d, J¼8.6 Hz, 4H), 7.11
(dd, J¼8.5, 7.4Hz, 4H), 6.71 (t, J¼7.3Hz, 2H), 6.48 (d, J¼7.7Hz, 4H), 4.57
(dd, J¼13.5, 6.8 Hz, 3H), 1.56 (d, J¼6.8 Hz, 6H). Enantiomeric excess
was determined by HPLC with a chiralcel OD-H column (hexane/2-
propanol¼98/2, 0.5 mL/min), tminor¼20.4 min; tmajor¼22.1 min, 78%
4.3.1. Compound 13j. MS-ESI, m/z 240 [MþH]þ 1H NMR (400 MHz,
CDCl3)
d
8.02e7.94 (m, 2H), 7.45 (dd, J¼5.2, 1.9 Hz, 3H), 6.96e6.89
(m, 2H), 6.76 (dd, J¼6.6, 2.2 Hz, 2H), 4.04 (q, J¼7.0 Hz, 2H), 2.26 (s,
ee. [
a
]
14 þ16.5 (c 0.03, CH3OH).
D
3H), 1.44 (t, J¼7.0 Hz, 3H).
4.4.7. N-Methoxyphenyl-N-[1-(4-bromophenyl)ethyl]amine
(14g). 1H NMR (400 MHz, CDCl3)
4.3.2. Compound 13l. MS-ESI, m/z 224 [MþH]þ 1H NMR (400 MHz,
d
7.42 (d, J¼8.4 Hz, 2H), 7.25 (d,
CDCl3)
d
8.02 (m, 2H), 7.51 (dd, J¼8.0, 2.3 Hz, 3H), 7.05 (d, J¼8.1 Hz,
J¼9.2 Hz, 2H), 6.74e6.66 (m, 2H), 6.50 (d, J¼8.7 Hz, 2H), 4.36 (dd,
J¼13.2, 6.6 Hz, 1H), 3.69 (d, J¼6.0 Hz, 3H), 1.51 (d, J¼6.7 Hz, 3H).
Enantiomeric excess was determined by HPLC with a chiralcel OD-
H column (hexane/2-propanol¼98/2, 1 mL/min), tmajor¼19.8 min;
2H), 6.67 (d, J¼8.2 Hz, 2H), 2.63 (m, 2H), 2.29 (s, 3H), 1.26 (t,
J¼7.6 Hz, 3H).
4.4. General procedure for the hydrosilylation of ketimines
tminor¼26.2 min, 80% ee. [
a
]
14 þ11.69 (c 0.03, CH3OH).
D
Under an argon atmosphere, 2 equiv trichlorosilane was added
dropwise to a stirred solution of imine 13 and catalyst 8a (20 mol %)
4.4.8. N-Phenyl-N-[1-(4-methoxyphenyl)ethyl]amine (14h). 1H NMR
(400 MHz, CDCl3)
7.30 (t, J¼12.4 Hz, 2H), 7.17e6.99 (m, 2H), 6.99e6.79
d