2178 J ournal of Medicinal Chemistry, 1998, Vol. 41, No. 13
Communications to the Editor
and kidney. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 251-255.
(c) Raynor, K.; O’Carroll, A.; Kong, H.; Yasuda, K.; Mahan, L.
C.; Bell, G. I.; Reisine, T. Characterization of cloned somatostatin
receptors SSTR4 and SSTR5. Mol. Pharmacol. 1993, 44, 385-
392. (d) Bruno, J . F.; Xu, Y.; Song, J .; Berelowitz, M. Molecular
cloning and functional expression of a brain-specific somatostatin
receptor. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 11151-11155.
(e) O’Carroll, A. M.; Lolait, S. J .; Konig, M.; Mahan, L. C.
Molecular cloning and expression of a pituitary somatostatin
receptor with preferential affinity for somatostatin-28. Mol.
Pharmacol. 1992, 42, 939-946.
factors. Potency presumably derives from three critical
binding elements of SRIF, the Trp8-Lys9 mimetic and a
lipophilic spiroindene moiety capable of binding in the
receptor pockets occupied by Phe6 and/or Phe11 of the
native ligand. Improved selectivity as well as potency
arises from the use of a ring to enforce conformational
rigidity onto the amino side chain to reduce the flex-
ibility of the lysine surrogate, making it fit particularly
well to sst2. Our work demonstrates that one can
approach the agonist potency of the large peptide SRIF
with a small molecule like 2a , and improved selectivity
is an added bonus. Figure 1 depicts the superposition
of 2a onto the peptide probe originally used to identify
the lead compound. The conformation of 2a was derived
by energy minimization using MMFF94(s).26 As shown
in the figure, the D-Trp bis(aminomethyl)cyclohexane
amide portion of the 2a maps to the Trp8-Lys9 of 1c.
The spiroindene reaches the space occupied by either
the Tyr7 or the Pro. These modeling studies provided
us a convenient way to visualize and compare our small
molecule ligands with the cyclic peptides in three
dimensions and generated stimulating ideas in the
design of even more potent and selective compounds.
In summary, 2a is a structurally novel, potent and
selective sst2 receptor agonist. The further exploitation
of the SAR and optimization of this class of SRIF
agonists will be reported subsequently.
(6) (a) Raynor, K.; Murphy, W. A.; Coy, D. H.; Taylor, J . E.; Moreau,
J . P.; Yasuda, K.; Bell, G. I.; Reisine, T. Cloned somatostatin
receptors: identification of subtype-selective peptides and dem-
onstration of high affinity binding of linear peptides. Mol.
Pharmacol. 1993, 43, 838-844. (b) Patel, Y. C.; Srikant, C. B.
Subtype selectivity of peptide analogs for all five cloned human
somatostatin receptors (hSSTR 1-5). Endocrinology 1994, 135,
2814-2817.
(7) Lloyd, K. C.; Amirmoazzami, S.; Friedik, F.; Chew, P.; Walsh,
J . H. Somatostatin inhibits gastrin release and acid secretion
by activating sst2 in dogs. Am. J . Physiol. 1997, 272, G1481-
G1488.
(8) (a) Rossowski, W.; Coy, D. H. Potent inhibitory effects of type
four receptor selective somatostatin analog on rat insulin release.
Biochem. Biophys. Res. Commun. 1993, 197, 366-371. (b)
Rossowski, W.; Coy, D. H. Specific inhibition of rat pancreatic
insulin and glucagon release by receptor-selective somatostatin
analogues. Biochem. Biophys. Res. Commun. 1994, 205, 341-
346. (c) Coy, D. H.; Rossowski, W. J . Somatostatin analogues
and multiple receptors: possible physiological roles. Ciba Found.
Symp. 1995, 190, 240-252.
(9) (a) Davies, R. R.; Turner, S. J .; Alberti, K. G.; J ohnston, D. G.
Somatostatin analogues in diabetes mellitus. Diabet. Med. 1989,
6, 103-111. (b) Smith, L. E.; Kopchick, J . J .; Chen, W.; Knapp,
J .; Kinose, F.; Daley, D.; Foley, E.; Smith, R. G.; Schaeffer, J .
M. Essential role of growth hormone in ischemia-induced retinal
neovascularization. Science 1997, 276, 1706-1709.
Ack n ow led gm en t. We would like to thank Drs.
Maria Silva and Byron Arison for detailed NMR analy-
sis of 2a and 2k , Dr. Richard Ball and Ms. Nancy Tsou
for X-ray crystallography, Ms. Amy Bernick for mass
spectrometry support, Ms. T. J . Wu for growth hormone
inhibition testing, and Drs. Edward Hayes and Sudha
Mitra for constructing the sst1-5 expression clones.
(10) Veber, D. F. Design and discovery in the development of peptide
analogs. In Peptides, Chemistry and Biology: Proceedings of the
12th American Peptide Symposium; Smith, J . A., Rivier, J . E.,
Eds.; ESCOM: Leiden, 1992; pp 3-14.
(11) Bauer, W.; Briner, U.; Doepfner, W.; Haller, R.; Huguenin, R.;
Marbach, P.; Petcher, T.; Pless, J . SMS 201-995: a very potent
and selective octapeptide analogue of somatostatin with pro-
longed action. Life Sci. 1982, 31, 1133-1140.
(12) Veber, D. F.; Freidinger, R. M.; Perlow, D. S.; Paleveda, W. J .,
J r.; Holly, F. W.; Strachan, R. G.; Nutt, R. F.; Arison, B. H.;
Homnick, C.; Randall, W. C.; Glitzer, M. S.; Saperstein, R.;
Hirschmann, R. A potent cyclic hexapeptide analogue of soma-
tostatin. Nature 1981, 292, 55-58.
Su p p or tin g In for m a tion Ava ila ble: Details of experi-
mental and spectral data for compounds 2a and 2k (7 pages).
Ordering information is given on any current masthead page.
(13) (a) Nicolaou, K. C.; Salvino, J . M.; Raynor, K.; Pietranico, S.;
Reisine, T.; Freidinger, R. M.; Hirschmann, R. Design and
synthesis of a peptidomimetic employing -D-glucose for scaffold-
ing. In PeptidessChemistry, Structure and Biology: Proceedings
of the 11th American Peptide Symposium; Rivier, J . E., Marshall,
G. R., Eds.; ESCOM: Leiden, 1990; pp 881-884. (b) Hir-
schmann, R.; Nicolaou, K. C.; Pietranico, S.; Leahy, E. M.;
Salvino, J .; Arison, B.; Cichy, M. A.; Spoors, P. G.; Shakespeare,
W. C.; Sprengeler, P. A.; Hamley, P.; Smith, A. B. III; Reisine,
T.; Raynor, K.; Maechler, L.; Donaldson, C.; Vale, W.; Freidinger,
R. M.; Cascieri, M. A.; Strader, C. D. De novo design and
synthesis of somatostatin non-peptide peptidomimetics utilizing
D-glucose as a novel scaffolding. J . Am. Chem. Soc. 1993, 115,
12550-12568 and references therein. (c) Papageorgiou, C.;
Haltiner, R.; Bruns, C.; Petcher, T. J . Design, synthesis, and
binding affinity of a nonpeptide mimic of somatostatin. Bioorg.
Med. Chem. Lett. 1992, 2, 135-140.
Refer en ces
(1) Reichlin, S. Somatostatin. N. Engl. J . Med. 1983, 309, 1495-
1501.
(2) (a) Brazeau, P.; Vale, W.; Burgus, R.; Ling, N.; Bucher, M.;
Rivier, J .; Guillemin, R. Hypothalamic polypeptide that inhibits
the secretion of the immunoreactive growth hormone. Science
1973, 179, 77-79. (b) Gerich, J . E.; Lovinger, R.; Grodsky, G.
M. Inhibition by somatostatin of glucagon and insulin release
from the perfused rat pancreas in response to arginine, isopro-
terenol and theophylline: evidence for a preferential effect on
glucagon secretion. Endocrinology 1975, 96, 749-754. (c) J o-
hansson, C.; Wisen, O.; Efendic, S.; Uvnas-Wallensten, K. Effects
of somatostatin on gastrointestinal propagation and absorption
of oral glucose in man. Digestion 1981, 22, 126-137. (d)
Lamberts, S. W. J .; Krenning, E. P.; Reubi, J .-C. The role of
somatostatin and its analogs in the diagnosis and treatment of
tumors. Endocrine Rev. 1991, 12, 450-482.
(3) (a) Gillies, G. Somatostatin: the neuroendocrine story. Trends
Pharmacol. Sci. 1997, 18, 87-95. (b) Dournaud, P.; J azat-
Poindessous, F.; Slama, A.; Lamour, Y.; Epelbaum, J . Correla-
tions between water maze performance and cortical somatostatin
mRNA and high-affinity binding sites during aging in rats. Eur.
J . Neurosci. 1996, 8, 476-485.
(4) Recommendations for nomenclature of somatostatin receptors
by the following article are adopted in this paper: Hoyer, D.;
Bell, G. I.; Berelowitz, M.; Epelbaum, J .; Feniuk, W.; Humphrey,
P. P.; O’Carroll, A. M.; Patel, Y. C.; Schonbrunn, A.; Taylor, J .
E.; Reisine, T. Classification and nomenclature of somatostatin
receptors. Trends Pharmacol. Sci. 1995, 16, 86-88.
(5) (a) Bell, G. I.; Reisine, T. Molecular biology of somatostatin
receptors. Trends Neurosci. 1993, 16, 34-8. (b) Yamada, Y.; Post,
S.; Wang, K.; Tager, H.; Bell, G. I.; Seino, S. Cloning and
functional characterization of a family of human and mouse
somatostatin receptors expressed in brain, gastrointestinal tract
(14) Papageorgiou, C.; Borer, X. A non-peptide ligand for the soma-
tostatin receptor having a benzodiazepinone structure. Bioorg.
Med. Chem. Lett. 1996, 6, 267-272.
(15) A structurally unrelated of class of sst4 selective somatostatin
agonist was reported after the completion of the manuscript:
Ankersen, M.; Crider, M.; Liu, S.; Ho, B.; Andersen, H. S.;
Stidsen, C. Discovery of a novel non-peptide somatostatin agonist
with SST4 selectivity J . Am. Chem. Soc. 1998, 120, 1368-1373.
(16) For the most recent work, see: Melacini, G.; Zhu, Q.; O¨ sapay,
G.; Goodman, M. A Refined Model for the Somatostatin Pharma-
cophore: Conformational Analysis of Lanthionine-Sandostatin
Analogs. J . Med. Chem. 1997, 40, 2252-2258 and references
therein.
(17) Freidinger, R. M.; Veber, D. F. Conformationally directed drug
design; ACS Symposium Series, No. 251; American Chemical
Society: Washington, DC, 1984; pp 169-187.