10.1002/anie.201710206
Angewandte Chemie International Edition
COMMUNICATION
128, 10993-10996; o) Z. Zuo, J. Yang, Z. Huang, Angew. Chem. Int. Ed.
2016, 55, 10839-10843; Angew. Chem. 2016, 128, 10997-11001; p) W.
J. Teo, C. Wang, Y. W. Tan, S. Ge, Angew. Chem. Int. Ed. 2017, 56,
4328-4332; Angew. Chem. 2017, 129, 4392-4396; Ni: q) I. Buslov, J.
Becouse, S. Mazza, M. Montandon-Clerc, X. Hu, Angew. Chem. Int. Ed.
2015, 54, 14523-14526; Angew. Chem. 2015, 127, 14731-14734; Cu: r)
M. W. Gribble, Jr., M. T. Pirnot, J. S. Bandar, R. Y. Liu, S. L. Buchwald,
J. Am. Chem. Soc. 2017, 139, 2192-2195.
hydrosilylation reaction. We surmised that a radical mechanism
might operate in the reaction based on the fact that the radical
initiator, LPO, could promote the reaction. Therefore, a radical
scavenger, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), was
added and it completely inhibited the reaction (Scheme 5c).
Besides, it was reported that (CO)5Mn· was generated via
homolysis of Mn2(CO)10 under UV irradiation.[12] As such, the Z
hydrosilylation reaction was tested without LPO under 380 nm
UV irradiation at room temperature and the hydrosilylation
products were formed in 75% yield with consistent Z-selectivity
(Scheme 5d). In view of these results, a radical mechanism was
shown in Scheme 5e. The homolysis of Mn2(CO)10 occurs to
generate (CO)5Mn·, which reacts with silane giving a silyl radical
and HMn(CO)5. The silyl radical adds to the alkyne to afford E-
and Z-configured alkenyl radicals, which undergo hydrogenolysis
with HMn(CO)5 to form the desired product 4 and regenerate the
(CO)5Mn· species. The hydrogenolysis of the Z-alkenyl radical
was preferred presumably due to the steric hindrance of the
diphenylmethylsilyl group.[13]
[3]
[4]
R. L. Yates, J. Catal. 1982, 78, 111-115.
a) P. K. Hanna, B. T. Gregg, A. R. Cutler, Organometallics 1991, 10, 31;
b) B. T. Gregg, P. K. Hanna, E. J. Crawford, A. R. Cutler, J. Am. Chem.
Soc. 1991, 113, 384-385; c) Z. Mao, B. T. Gregg, A. R. Cutler, J. Am.
Chem. Soc. 1995, 117, 10139; d) B. T. Gregg, A. R. Cutler, J. Am.
Chem. Soc. 1996, 118, 10069-10084; e) M. DiBiase Cavanaugh, B. T.
Gregg, A. R. Cutler, Organometallics 1996, 15, 2764-2769.
[5]
a) R. Arias-Ugarte, H. K. Sharma, A. L. Morris, K. H. Pannell, J. Am.
Chem. Soc. 2012, 134, 848-851; b) J. Zheng, S. Chevance, C. Darcel, J.
B. Sortais, Chem. Commun. 2013, 49, 10010-10012; c) J. Zheng, S.
Elangovan, D. A. Valyaev, R. Brousses, V. César, J.-B. Sortais, C.
Darcel, N. Lugan, G. Lavigne, Adv. Synth. Catal. 2014, 356, 1093-1097;
d) D. A. Valyaev, D. Wei, S. Elangovan, M. Cavailles, V. Dorcet, J.-B.
Sortais, C. Darcel, N. Lugan, Organometallics 2016, 35, 4090-4098.
a) V. K. Chidara, G. Du, Organometallics 2013, 32, 5034-5037; b) T. K.
Mukhopadhyay, M. Flores, T. L. Groy, R. J. Trovitch, J. Am. Chem. Soc.
2014, 136, 882-885; c) T. K. Mukhopadhyay, C. L. Rock, M. Hong, D. C.
Ashley, T. L. Groy, M. H. Baik, R. J. Trovitch, J. Am. Chem. Soc. 2017,
139, 4901-4915; d) X. Ma, Z. Zuo, G. Liu, Z. Huang, ACS Omega 2017,
2, 4688-4692.
In summary, the first manganese-catalyzed hydrosilylation
of alkynes is developed, which is highlighted by divergent E/Z
stereoselectivity. The cooperative use of the mononuclear
MnBr(CO)5 and the AsPh3 ligand enables highly selective
formation of E-products while the catalytic combination of
dinuclear Mn2(CO)10 with LPO delivers the Z-products in good to
excellent stereo- and regioselectivity. Mechanistically, the herein
observed dichotomy of manganese catalysis through either
organometallic or radical pathways is unique and holds great
potentials for developing new synthetic transformations, which
are underway in our laboratory.
[6]
[7]
a) H. S. Hilal, M. Abu-Eid, M. Al-Subu, S. Khalaf, J. Mol. Catal. 1987, 39,
1-11; b) H. S. Hilal, M. A. Suleiman, W. J. Jondi, S. Khalaf, M. M.
Masoud, J. Mol. Catal. A: Chem. 1999, 144, 47-59; c) S. L. Pratt, R. A.
Faltynek, J. Organomet. Chem. 1983, 258, C5-C8; d) C. Obradors, R. M.
Martinez, R. A. Shenvi. J. Am. Chem. Soc. 2016, 138, 4962-4971; e) J.
H. Docherty, J. Peng, A. P. Dominey, S. P. Tomas, Nat. Chem. 2017, 9,
595; f) S. K. Russell, A. C. Bowman, E. Lobkovsky, K. Wieghardt, P. J.
Chirik, Eur. J. Inorg. Chem. 2012, 535-545.
[8]
a) B. Zhou, H. Chen, C. Wang, J. Am. Chem. Soc. 2013, 135,
1264–1267; b) R. He, Z.-T. Huang, Q.-Y. Zheng, C. Wang, Angew.
Chem. Int. Ed. 2014, 53, 4950–4953; Angew. Chem. 2014, 126,
5050–5053; c) R. He, X. Jin, H. Chen, Z.-T. Huang, Q.-Y. Zheng, C.
Wang, J. Am. Chem. Soc. 2014, 136, 6558–6561; d) B. Zhou, Y. Hu, C.
Wang, Angew. Chem. Int. Ed. 2015, 54, 13659–13663; Angew. Chem.
2015, 127, 13863–13867; e) B. Zhou, Y. Hu, T. Liu, C. Wang, Nat.
Commun. 2017, 8, DOI: 10.1038/s41467-017-01262-4.
Acknowledgements
Financial support from NSFC (21472194, 21772202, 21521002)
are gratefully acknowledged. We also thank the Alexander von
Humboldt Foundation for the Equipment Subsidy (GC-MS).
Keywords: hydrosilylation • alkynes • manganese • selectivity •
[9]
For selected recent examples, see: a) H. Wang, M. M. Lorion, L.
Ackermann, Angew. Chem. Int. Ed. 2017, 56, 6339–6342; Angew.
Chem. 2017, 129, 6436–6439; b) S.-Y. Chen, X.-L. Han, J.-Q. Wu, Q. Li,
Y. Chen, H. Wang, Angew. Chem. Int. Ed. 2017, 56, 9939–9943; Angew.
Chem. 2017, 129, 10071–10075; c) C. Wang, A. Wang, M. Rueping,
Angew. Chem. Int. Ed. 2017, 56, 9935–9938; Angew. Chem. 2017, 129,
10067–10070; d) Q. Lu, S. Greßies, F. J. R. Klauck, F. Glorius, Angew.
Chem. Int. Ed. 2017, 56, 6660–6664; Angew. Chem. 2017, 129,
6760–6764; e) N. P. Yahaya, K. M. Appleby, M. Teh, C. Wagner, E.
Troschke, J. T. W. Bray, S. B. Duckett, L. A. Hammarback, J. S. Ward, J.
Milani, N. E. Pridmore, A. C. Whitwood, J. M. Lynam, I. J. S. Fairlamb,
Angew. Chem. Int. Ed. 2016, 55, 12455– 12459; Angew. Chem. 2016,
128, 12643–12647; f) Y. Kuninobu, Y. Nishina, T. Takeuchi, K. Takai,
Angew. Chem. Int. Ed. 2007, 46, 6518–6520; Angew. Chem. 2007, 119,
6638–6640; g) A. Mukherjee, A. Nerush, G. Leitus, L. J. W. Shimon, Y.
B. David, N. A. E. Jalapa, D. Milstein, J. Am. Chem. Soc. 2016, 138,
4298–4301; h) S. Elangovan, J. Neumann, J.-B. Sortais, K. Junge, C.
Darcel, M. Beller, Nat. Commun. 2016, 7, 12641–12648.
synthetic methods
[1]
[2]
a) Comprehensive Handbook on Hydrosilylation (Ed.: B. Marcinec),
Pergamon, Oxford, 1992; b) Hydrosilylation: A Comprehensive Review
on Recent Advances (Ed.: B. Marciniec), Springer, Berlin, 2009.
For selected recent examples, see Ru: a) S. Ding, L. J. Song, L. W.
Chung, X. Zhang, J. Sun, Y. D. Wu, J. Am. Chem. Soc. 2013, 135,
13835-13842; b) S. Ding, L. J. Song, Y. Wang, X. Zhang, L. W. Chung,
Y. D. Wu, J. Sun, Angew. Chem. Int. Ed. 2015, 54, 5632-5635; Angew.
Chem. 2015, 127, 5724-5727; Rh: c) A. Mori, E. Takahisa, Y. Yamanura,
T. Kato, A. P. Mudalige, H. Kajiro, K. Hirabayashi, Y. Nishihara, T.
Hiyama, Organometallics 2004, 23, 1755-1765; Pt: d) G. Berthon-Gelloz,
J. M. Schumers, G. De Bo, I. E. Marko, J. Org. Chem. 2008, 73,
4190-4197; e) Y. Sumida, T. Kato, S. Yoshida, T. Hosoya, Org. Lett.
2012, 14, 1552-1555; Fe: f) M. D. Greenhalgh, A. S. Jones, S. P.
Thomas, ChemCatChem 2015, 7, 190-222; g) X. Du, Z. Huang, ACS
Catalysis 2017, 7, 1227-1243; h) A. M. Tondreau, C. C. Atienza, K. J.
Weller, S. A. Nye, K. M. Lewis, J. G. Delis, P. J. Chirik, Science 2012,
335, 567-570; i) C. Belger, B. Plietker, Chem. Commun. 2012, 48,
5419-5421; j) A. J. Challinor, M. Calin, G. S. Nichol, N. B. Carter, S. P.
Thomas, Adv. Synth. Catal. 2016, 358, 2404-2409; Co: k) J. Sun, L.
Deng, ACS Catalysis 2016, 6, 290-300; l) Z. Mo, J. Xiao, Y. Gao, L.
Deng, J. Am. Chem. Soc. 2014, 136, 17414-17417; m) C. Chen, M. B.
Hecht, A. Kavara, W. W. Brennessel, B. Q. Mercado, D. J. Weix, P. L.
Holland, J. Am. Chem. Soc. 2015, 137, 13244-13247; n) J. Guo, Z. Lu,
Angew. Chem. Int. Ed. 2016, 55, 10835-10838; Angew. Chem. 2016,
[10] For more details, see the Supporting Information.
[11] CCDC 1577774.
[12] B. C. Gilbert, W. Kalz, C. I. Lindsay, P. T. McGrail, A. F. Parsons, D. T. E.
Whittaker, J. Chem. Soc., Perkin Trans. 1 2000, 1187–1194.
[13] a) B. Kopping, C. Chatgilialoglu, M. Zehnder, B. Giese, J. Org. Chem.
1992, 57, 3994-4000; b) Y. Liu, S. Yamazaki, S. Yamabe, J. Org. Chem.
2005, 70, 556-561.
This article is protected by copyright. All rights reserved.