Communication
ChemComm
that given a different selection of starting materials, different,
but more effective pyrotechnic MOFs can be constructed. Given
these basic results, it will be possible to move forward and
determine more specific physico-chemical characteristics, such
as friction and impact tests for safety and directly useful
parameters, e.g. well-defined spectral characteristics. It was
also intended that the incorporation of group I and II metals
would introduce colour into the burn, however this was not very
prominent and further work will aim to incorporate chlorine
into the framework so that metal chloride decomposition
products, which have characteristic colours, form on burning.
Notes and references
1 J. A. Conkling, Chemistry of pyrotechnics: basic priniciples and theory,
CRC Press, 2nd edn, 2011, pp. 83–96.
¨
2 G. Steinhauser and T. M. Klapotke, Angew. Chem., Int. Ed., 2008, 47,
3330–3347.
3 B. A. Obadele, Z. H. Masuku and P. A. Olubambi, Powder Technol.,
2012, 230, 169–182.
4 K. Liu, Powder Technol., 2009, 193, 208–213.
5 (a) M. Comet, V. Pichot, B. Siegert, F. Schnell, F. Ciszek and
D. Spitzer, J. Phys. Chem. Solids, 2010, 71, 64–68; (b) M. Comet,
B. Siegert, F. Schnell, V. Pichot, F. Ciszek and D. Spitzer, Propellants,
Explos., Pyrotech., 2010, 35, 220–225.
6 S. R. Anderson, D. J. am Ende, J. S. Salan and P. Samuels, Propellants,
Explos., Pyrotech., 2014, 39, 637–640.
Fig. 2 Burn tests in relation to DSC results. Top row Ca4, Sr4, Ba4, DSC4;
middle row Ca5, Sr5, Ba5, DSC5; bottom row Ca6, Sr6, Ba6, DSC6 (DSC
Ca = orange, Sr = red, Ba = green).
7 (a) J. L. C. Rowsell and O. M. Yaghi, Microporous Mesoporous Mater.,
2004, 73, 3–14; (b) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K.
Chae, M. Eddaoudi and J. Kim, Nature, 2003, 423, 705–714;
(c) S. L. James, Chem. Soc. Rev., 2003, 32, 276–288.
8 (a) D. Banerjee, Z. Hu, S. Pramanik, X. Zhang, H. Wang and J. Li,
CrystEngComm, 2013, 15, 9745–9750; (b) S. S. Nagarkar, B. Joarder,
A. K. Chaudhari, S. Mukherjee and S. K. Ghosh, Angew. Chem., Int. Ed.,
2013, 52, 2881–2885; (c) J. H. Lee, S. Kang, J. Y. Lee, J. Jaworski and
J. H. Jung, Chem. – Eur. J., 2013, 19, 16665–16671; (d) Z. Hu, B. J. Deibert
and J. Li, Chem. Soc. Rev., 2014, 43, 5815–5840; (e) B. Gole, A. K. Bar and
P. S. Mukherjee, Chem. – Eur. J., 2014, 20, 2276–2291.
9 O. S. Bushuyev, P. Brown, A. Maiti, R. H. Gee, G. R. Peterson, B. L.
Weeks and L. J. Hope-Weeks, J. Am. Chem. Soc., 2011, 134,
1422–1425.
has the most dramatic effect. Also descending the group (Ca 4
Sr 4 Ba) increases pyrotechnic effect. The effect is clearly linked
to structure – 3D networks formed by 4 are very stable and have
least effect, whilst lower dimensionality networks i.e. 1D chains
in 5 and 2D sheets in 6 are less reinforced and more effective
pyrotechnics. The enthalpy of combustion from DSC is greater
for lower dimensionality, thus supporting the hypothesis linking
structure to pyrotechnic effect.
In summary, thirteen alkaline earth metal and three alkali
metal coordination polymers have been structurally charac-
terised, eleven of which are novel and all exhibiting pyrotechnic
effects. With this approach, the typical pyrotechnic mix (metal
nitrate oxidiser, organic fuel) has been transformed into an
10 O. S. Bushuyev, G. R. Peterson, P. Brown, A. Maiti, R. H. Gee,
B. L. Weeks and L. J. Hope-Weeks, Chem. – Eur. J., 2013, 19,
1706–1711.
11 S. Li, Y. Wang, C. Qi, X. Zhao, J. Zhang, S. Zhang and S. Pang, Angew.
Chem., Int. Ed., 2013, 52, 14031–14035.
¨
integrated MOF, containing fuel (both metal and organic) and a 12 (a) G. Steinhauser and T. M. Klapotke, Angew. Chem., Int. Ed., 2008,
¨
47, 3330–3347; (b) T. M. Klapotke, J. Stierstorfer, K. R. Tarantik and
I. D. Thoma, Z. Anorg. Allg. Chem., 2008, 634, 2777–2784;
(c) T. M. Klapotke, C. M. Sabate and M. Rasp, Dalton Trans., 2009,
1825–1834; (d) K. Karaghiosoff, T. M. Klapotke and C. M. Sabate,
Eur. J. Inorg. Chem., 2009, 238–250; (e) N. Fischer, T. M. Klapotke,
K. Peters, M. Rusan and J. Stierstorfer, Z. Anorg. Allg. Chem., 2011,
637, 1693–1701.
fluorinated oxidiser in a single structure. Using a fluorinated
linker produces a strong pyrotechnic effect that can be linked to
the dimensionality of the framework. There is a fine balance
between cross-linking 1D chains so that ingredients are intimately
mixed, whilst at the same time ensuring that the structure is not
¨
´
¨
so stable that the pyrotechnic effect is reduced. We therefore 13 D. Saha, S. Deng and Z. Yang, J. Porous Mater., 2009, 16, 141–149.
14 T. Matsuzaki and Y. Iitaka, Acta Crystallogr., Sect. B: Struct. Crystallogr.
Cryst. Chem., 1972, 28, 1977–1981.
15 R. H. Groeneman and J. L. Atwood, Cryst. Eng., 1999, 2, 241–249.
conclude that these materials offer the necessary structural tun-
ability within an integrated scaffold for ingredients to produce an
appreciable effect and thus may be the basis for a next generation 16 F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 380–388.
17 L. Yang, D. Zhao and G. Li, Acta Crystallogr., Sect. E: Struct. Rep.
Online, 2011, 67, 282.
18 C. A. Williams, A. J. Blake, C. Wilson, P. Hubberstey and
of pyrotechnics, for example it is entirely possible that using this
molecular construction method, further modifications can be
¨
developed, permitting incorporation of more complex entities,
such as dyestuffs for release during burning. Clearly, this
approach is directed by our starting materials, which are
directly related to current pyrotechnic processes, but it is likely
M. Schroder, Cryst. Growth Des., 2008, 8, 911–922.
19 M. Werker, B. Dolfus and U. Ruschewitz, Z. Anorg. Allg. Chem., 2013,
639, 2487–2492.
20 Q. Zhang and J. N. M. Shreeve, Angew. Chem., Int. Ed., 2014, 53,
2540–2542.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015