Paper
RSC Advances
A. Prastaro, S. Niembro, A. Shar and A. Vallribera, Org.
´
Biomol. Chem., 2009, 7, 2270–2273; (c) J. F. Cıvicos,
D. A. Alonso and C. Njera, Adv. Synth. Catal., 2013, 355,
203–208; (d) L. Zhou, F. Ye, Y. Zhang and J. B. Wang, J. Am.
Chem. Soc., 2010, 132, 13590–13591; (e) K. H. Chung,
C. M. So, S. M. Wong, C. H. Luk, Z. Y. Zhou, C. P. Lau and
F. Y. Kwong, Chem. Commun., 2012, 48, 1967–1969; (f)
Z. Y. Wang, G. Q. Chen and L. X. Shao, J. Org. Chem., 2012,
77, 6608–6614.
2 (a) A. F. Littke and G. C. Fu, Angew. Chem., Int. Ed., 2002, 41,
4176–4211; (b) W. J. Tang, S. Keshipeddy, Y. D. Zhang,
X. D. Wei, J. Savoie, N. D. Patel, N. K. Yee and
C. H. Senanayake, Org. Lett., 2011, 13, 1366–1369.
3 K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett.,
1975, 16, 4467–4470.
4 Y. Liang, Y. X. Xie and J. H. Li, J. Org. Chem., 2006, 71, 379–
381.
5 (a) H. Plenio, Angew. Chem., Int. Ed., 2008, 47, 6954–6956; (b)
´
T. Lauterbach, M. Livendahl, A. Rosellon, P. Espinet and
A. M. Echavarren, Org. Lett., 2010, 12, 3006–3009; (c)
Scheme 6 Proposed mechanism for Sonogashira reactions catalyzed
by Cat. 3.
´
Z. Gonda, G. L. Tolnai and Z. Novak, Chem.–Eur. J., 2010,
16, 11822–11826; (d) N. E. Leadbeater, Nat. Chem., 2010, 2,
1007.
(Table 4, entry 1). For bromobenzene with electron-withdrawing
groups, including –F, –Cl, the reaction proceeded smoothly and
77–85% yields of the corresponding coupling product were
acquired. However, for bromobenzene with an electron-rich
group, such as –OCH3, –OH, –CH3, the reaction proceeded
much slower, and only 57–73% yields were obtained.
We proposed a plausible mechanism for this Cat. 3 mediated
Sonogashira and Heck coupling reactions (Scheme 6). The Pd(0)
species could be generated readily from the reaction of Cat. 3
with substrates, ligands, and TEA,2a,4,9e,14 and, followed by the
oxidative addition of Pd(0) with R1X to form intermediate (1).
On account of alkalinity of TEA is feeblish, the acetylene is not
able to deprotonation, therefore, acetylene and Pd complex
form intermediate (2), which was further involved in the typical
catalytic cycle of Sonogashira coupling reaction. The mecha-
nism is also suitable for Heck cross-coupling reactions.
6 (a) H. Doucet and J. C. Hierso, Angew. Chem., Int. Ed., 2007,
46, 834–871; (b) R. Chinchilla and C. Najera, Chem. Rev.,
2007, 107, 874–922; (c) T. Schulz, C. Torborg, S. Enthaler,
B. Schaeffner, A. Dumrath, A. Spannenberg, H. Neumann,
A. Boerner and M. Beller, Chem.–Eur. J., 2009, 15, 4528–
4533; (d) A. D. Finke, E. C. Elleby, M. J. Boyd, H. Weissman
and J. S. Moore, J. Org. Chem., 2009, 74, 8897–8900; (e)
J. L. Bolligera and C. M. Frech, Adv. Synth. Catal., 2009,
351, 891–902.
7 (a) D. Gelman and S. L. Buchwald, Angew. Chem., Int. Ed.,
2003, 42, 5993–5996; (b) O. R'kyek, N. Halland,
A. Lindenschmidt, J. Alonso, P. Lindemann, M. Urmann
´
and M. Nazare, Chem.–Eur. J., 2010, 16, 9986–9989; (c)
Y. Nishihara, D. Ogawa, S. Noyori and M. Iwasaki, Chem.
Lett., 2012, 41, 1503.
´
8 D. A. Alonso, C. Najera, I. Pastor and M. Yus, Chem.–Eur. J.,
In summary, the NHC–Pd complex featured with air-insen-
sitivity, was proved to be a highly efficient catalyst for the
Suzuki, Sonogashira and Heck coupling reactions. In a simple
one-pot procedure free of co-catalyst, this complex is available
for a wide range of substrates under mild conditions with good
to excellent product yields and a low catalyst loading.
2010, 16, 5274–5284.
9 (a) Z. Gu, Z. Li, Z. Liu, Y. Wang, C. Liu and J. Xiang, Catal.
Commun., 2008, 9, 2154–2157; (b) M. H. Sie, Y. H. Hsieh,
Y. H. Tsai, J. R. Wu, S. J. Chen, P. V. Kumar, J. H. Lii and
H. M. Lee, Organometallics, 2010, 29, 6473–6481; (c) X. Cui,
Z. Li, C. Z. Tao, Y. Xu, J. Li, L. Liu and Q. X. Guo, Org. Lett.,
¨
2006, 8, 2467–2470; (d) E. Wuttke, B. Nagele, B. Weibert
and F. Kessler, Organometallics, 2011, 30, 6270–6282; (e)
A. Kamal, V. Srinivasulu, B. N. Seshadri, N. Narkandeya,
A. Alari and N. Shankaraiah, Green Chem., 2012, 14, 2513–
Acknowledgements
The authors acknowledge the nancial support of the National
´
´
Natural Science Foundation of China (no. 21302098).
2522; (f) D. Mery, K. Heuze and D. Astruc, Chem. Commun.,
2003, 15, 1934–1935; (g) M. Bakherad, A. Keivanloo and
S. Samangooei, Tetrahedron Lett., 2012, 53, 5773–5776.
10 (a) Y. Zhang, T. F. Jamison, S. Patel and N. Mainol, Org.
Lett., 2011, 13, 280–283; (b) J. P. Huang, W. Wang and
H. Li, ACS Catal., 2013, 3, 1526–1536.
References
1 (a) J. D. Senra, L. F. B. Malta, M. E. H. M. da Costa,
R. C. Michel, L. C. S. Aguiar, A. B. C. Simas and
O. A. C. Antunes, Adv. Synth. Catal., 2009, 351, 2411–2422; 11 (a) H. J. Xu, Y. Q. Zhao and X. F. Zhou, J. Org. Chem., 2011, 76,
(b) R. Bernini, S. Cacchi, G. Fabrizi, G. Forte, F. Petrucci,
8036–8041; (b) A. Ohtaka, T. Teratani, R. Fujii, K. Ikeshita,
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 30447–30452 | 30451