Y. Suzaki et al. / Tetrahedron Letters 52 (2011) 3883–3885
3885
3.0
Acknowledgments
(A)
(B)
We thank our colleagues in the Center for Advanced Materials
Analysis, Technical Department, Tokyo Institute of Technology for
FABMS measurement. This work was supported by a Grant-in-
Aid for Scientific Research for Young Scientists from the Ministry
of Education, Culture, Sports, Science and Technology, Japan
(19750044), and by the Global COE program ‘Education and Re-
search Center for Emergence of New Molecular Chemistry’.
(b)
(a)
(c)
(d)
ε
0
300
350
400
450
Supplementary data
λ /nm
600
Supplementary data (experimental procedures and spectral
data for new compounds associated with this article can be found,
in the online version. CCDC nos. 822408 and 822409 contain the
supplementary crystallographic data for 1a(CHCl3)2 and 1c,
respectively. These data can be obtained free of charge from The
(b)
I
(d)
(c)
(e)
(a)
450
λ /nm
0
350
550
References and notes
1. (a) Hawker, C. J.; Wooley, K. L. Science 2005, 309, 1200; (b) Berresheim, A. J.;
Müller, M.; Müllen, K. Chem. Rev. 1999, 99, 1747; (c) Grimsdale, A. C.; Müllen, K.
Angew. Chem., Int. Ed. 2005, 44, 5592; (d) De Schryver, F. C.; Vosch, T.; Cotlet,
M.; Van der Auweraer, M.; Müllen, K.; Hofkens, J. Acc. Chem. Res. 2005, 38, 514;
(e) Yamamoto, T. Macromol. Rapid Commun. 2002, 23, 583.
Figure 4. (A) Absorption (1.0 ꢂ 10ꢁ2 mM) and (B) emission (1.0 ꢂ 10ꢁ3 mM)
spectra of (a) 1a, (b) 1c, (c) 2a, (d) 2b, and (e) 2a (1.0 ꢂ 10ꢁ3 mM) + pyridine
(1.0 ꢂ 102 mM) (CHCl3, 20 °C).
2. (a) Brédas, J. L.; Silbey, R.; Boudreaux, D. S.; Chance, R. R. J. Am. Chem. Soc. 1983,
105, 6555; (b) Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Müllen,
K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946; (c)
Yamamoto, T.; Hayashi, Y.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1978, 51, 2091.
3. Suzaki, Y.; Chihara, E.; Takagi, A.; Osakada, K. Dalton Trans. 2009, 9881.
4. (a) Chen, C.-W.; Whitlock, H. W., Jr. J. Am. Chem. Soc. 1978, 100, 4921; (b)
Zimmerman, S. C.; VanZyl, C. M. J. Am. Chem. Soc. 1987, 109, 7894; (c)
Zimmerman, S. C.; Wu, W. J. Am. Chem. Soc. 1989, 111, 8054; (d) Zimmerman, S.
C. Top. Curr. Chem. 1993, 165, 71.
Table 1
Absorption and emission data of 1a, 1c, 2a, 2b, and anthracene
Absorptiona
kmax/nm
Emissionb
kmax/nm
Compound
e
/Mꢁ1 cmꢁ1
uc
1a
1c
2a
2a + py
2b
368
368
368
368
368
359
24500
25700
9700
14600
9100
—
<0.01
0.39
0.31 (0.35
0.05
0.33 (0.36
410, 428
412, 429
412. 428
414, 428
405
d
d
)
5. (a) Klärner, F.-G.; Kahlert, B. Acc. Chem. Res. 2003, 36, 919; (b) Harmata, M. Acc.
Chem. Res. 2004, 37, 862.
e
)
6. (a) Zimmerman, S. C.; Saionz, K. W.; Zeng, Z. Proc. Natl. Acad. Sci. U.S.A. 1993, 90,
1190; (b) Zimmerman, S. C.; Saionz, K. W. J. Am. Chem. Soc. 1995, 117, 1175.
7. Recent examples of molecular tweezers (a) Chen, G.; Bouzan, S.; Zhao, Y.
Tetrahedron Lett. 2010, 51, 6552; (b) Legouin, B.; Gayral, M.; Uriac, P.; Cupif, J.-
F.; Levoin, N.; Toupet, L.; van de Weghe, P. Eur. J. Org. Chem. 2010, 5503; (c)
Legouin, B.; Gayral, M.; Uriac, P.; Tomasi, S.; van de Weghe, P. Tetrahedron:
Asymmetry 2010, 21, 1307; (d) Hisamatsu, Y.; Aihara, H. Chem. Commun. 2010,
46, 4902; (e) Leblond, J.; Gao, H.; Petitjean, A.; Leroux, J.-C. J. Am. Chem. Soc.
2010, 132, 8544; (f) Ulrich, S.; Petitjean, A.; Lehn, J.-M. Eur. J. Inorg. Chem. 2010,
1913; (g) Pérez, E. M.; Martín, N. Pure Appl. Chem. 2010, 82, 523; (h) Wallentin,
C.-J.; Wixe, T.; Wendt, O. F.; Bergquist, K.-E.; Wärnmark, K. Chem. Eur. J. 2010,
d
Anthracene
7200
(0.09
)
a
b
c
[Compound] = 1.0 ꢂ 10ꢁ2 mM, CHCl3, 20 °C.
[Compound] = 1.0 ꢂ 10ꢁ3 mM, CHCl3, 20 °C, kex = kmax(absorption).
Quantum yield. Standard sample: quinine (1.0 ꢂ 10ꢁ3 mM) in H2SO4(aq),
u
std = 0.546.
d
[Compound] = 2.0 ꢂ 10ꢁ3 mM.
e
[pyridine]/[2a] = 1.0 ꢂ 105.
ˇ
´
16, 3994; (i) Tatar, A.; Cejka, J.; Král, V.; Dolensky, B. Org. Lett. 2010, 12, 1872; (j)
Skibin´ ski, M.; Gómez, R.; Lork, E.; Azov, V. A. Tetrahedron 2009, 65, 10348; (k)
Marquis, R.; Kulikiewicz, K.; Lebedkin, S.; Kappes, M. M.; Mioskowski, C.;
Meunier, S.; Wagner, A. Chem. Eur. J. 2009, 15, 11187; (l) Lee, C.-H.; Yoon, H.;
Jang, W.-D. Chem. Eur. J. 2009, 15, 9972; (m) Nishiuchi, T.; Kuwatani, Y.;
Nishinaga, T.; Iyoda, M. Chem. Eur. J. 2009, 15, 6838.
O
H
O
N
N
O
H
H
N
N
H
O
8. Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. J. Chem. Soc., Perkin Trans. 2
2001, 651.
9. A molecule of 1a in the single crystal, obtained from a CHCl3 solution, has
crystallographic C2. The crystallographically independent unit observed by X-
ray crystallography is composed of half of 1a and one molecule of CHCl3.
10. Suezawa, H.; Yoshida, T.; Umezawa, Y.; Tsuboyama, S.; Nishio, M. Eur. J. Inorg.
Chem. 2002, 3148.
11. Stueber, G. J.; Kieninger, M.; Schettler, H.; Busch, W.; Goeller, B.; Franke, J.;
Kramer, H. E. A.; Hoier, H.; Henkel, S.; Fischer, P.; Port, H.; Hirsch, T.; Rytz, G.;
Birbaum, J.-L. J. Phys. Chem. 1995, 99, 10097.
12. de Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Coord. Chem. Rev. 2000,
205, 41.
13. Iwasa, J.; Ono, K.; Fujita, M.; Akita, M.; Yoshizawa, M. Chem. Commun. 2009,
5746.
1a
1a'
Scheme 2. Canonical forms of 1a.
by strong O–HꢀꢀꢀN hydrogen bonds with the neighboring pyrimi-
dine group (Scheme 2).
In summary, we obtained new aromatic compounds 1a and 1c.
The intramolecular hydrogen bonds of di(hydroxyphenyl)pyrimi-
dine group in 1a maintain the ‘U’-shape conformation in the solid
as well as in the solution, while 1c adopts quite different confor-
mation due to C–HꢀꢀꢀO interaction. These molecules with similar
chemical structures but different conformation and optical proper-
ties can be employed as the fundamental motif of the compounds
which show switching behavior. Further studies on the compounds
and the derivation are now in progress.14
14. Preliminary studies were conducted on the host–guest complexation of 1a
with the guest molecules. The 1H NMR measurement of a mixture of 1a and
p-
acceptors, such as TCNQ, TCNE and PFB (pentafluorobenzene), in CDCl3, DMSO-
d6 and benzene-d6 ([1a] = [Guest molecule] = 1.0 mM, rt and 50 °C, 24 h),
however, did not show shift of the signals caused by the complexation. We are
exploring the conditions suited for the formation of the host–guest complexes.