Chemical Science
Edge Article
K. E. Huggins, M. Keser and A. Amstutz, Science, 1997, 276,
384–389; (d) G. M. Whitesides and B. Grzybowski, Science,
2002, 295, 2418–2421; (e) J. D. Hartgerink, E. Beniash and
S. I. Stupp, Science, 2001, 294, 1684–1688; (f) L. Brunsveld,
B. J. B. Folmer, E. W. Meijer and R. P. Sijbesma, Chem.
Rev., 2001, 101, 4071–4098; (g) J. W. Steed and J. L. Atwood,
Supramolecular Chemistry, John Wiley & Sons, 2009; (h)
S. Tothadi and G. R. Desiraju, Acc. Chem. Res., 2014, DOI:
10.1021/ar5001555.
8 C.-H. Sue, S. Basu, A. C. Fahrenbach, A. K. Shveyd, S. K. Dey,
Y. Y. Botros and J. F. Stoddart, Chem. Sci., 2010, 1, 119–125.
9 M. Sharif, A. Maalik, S. Reimann, J. Iqbal, T. Patonay,
A. Spannenberg, A. Villinger and P. Langer, Tetrahedron,
2013, 69, 174–183.
J.-M. Lehn, Angew. Chem., Int. Ed., 2013, 52, 2836–2850; (i) 10 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr.,
T. Aida, E. W. Meijer and S. I. Stupp, Science, 2012, 335,
813–817.
5 (a) D. J. Cram and J. M. Cram, Science, 1974, 183, 803–809; (b)
2008, 64, 112–122.
11 E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch,
D. M. Greenblatt, E. C. Meng and T. E. Ferrin, J. Comput.
Chem., 2004, 25, 1605–1612.
J.-R. Li, R. J. Kuppler and H.-C. Zhou, Chem. Soc. Rev., 2009,
ˇ
´
38, 1477–1504; (c) Q. Li, W. Zhang, O. S. Miljanic, C.-H. Sue, 12 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington,
Y.-L. Zhao, L. Liu, C. B. Knobler, J. F. Stoddart and
O. M. Yaghi, Science, 2009, 325, 855–859; (d) C. Valente,
E. Choi, M. E. Belowich, C. J. Doonan, Q. Li, T. B. Gasa,
P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor,
J. van de Streek and P. A. Wood, J. Appl. Crystallogr., 2008,
41, 466–470.
Y. Y. Botros, O. M. Yaghi and J. F. Stoddart, Chem. 13 (a) J. Porwisiak and W. Dmowski, Synth. Commun., 1989, 19,
Commun., 2010, 46, 4911–4913; (e) J. Tian, S. Ma,
P. K. Thallapally, D. Fowler, B. P. McGrail and J. L. Atwood,
Chem. Commun., 2011, 47, 7626–7628; (f) N. L. Strutt,
D. Fairen-Jimenez, J. Iehl, M. B. Lalonde, R. Q. Snurr,
O. K. Farha, J. T. Hupp and J. F. Stoddart, J. Am. Chem.
Soc., 2012, 134, 17436–17439; (g) C. Ke, H. Destecroix,
3221–3229; (b) D. H. Suh, E. Y. Chung, Y.-T. Hong and
K.-Y. Choi, Angew. Makromol. Chem., 1998, 254, 33–38; (c)
S. Kato, Y. Nonaka, T. Shimasaki, K. Goto and
T. Shinmyozu, J. Org. Chem., 2008, 73, 4063–4075; (d)
X. Guo and M. D. Watson, Macromolecules, 2011, 44, 6711–
6716.
M. P. Crump and A. P. Davis, Nat. Chem., 2012, 4, 718–723; 14 J. March, Advanced Organic Chemistry: Reactions,
(h) S. Guha, F. S. Goodson, R. J. Clark and S. Saha,
CrystEngComm, 2012, 14, 1213–1215.
Mechanisms, and Structure, Wiley, New York, 1992.
15 This instability in polar deuterated solvents prevented us
from obtaining NMR spectra with acceptable signal to
noise ratios for compounds AX. The need to acquire 13C
NMR spectra, which requires extended acquisition times,
further limited the utility of NMR spectroscopy.
Fortunately, the structure of the products could be
conrmed by X-ray crystallography.
6 (a) S. Horiuchi and Y. Tokura, Nat. Mater., 2008, 7, 357–366;
(b) J. P. Hill, J. Wusong, A. Kosaka, T. Fukushima,
H. Ichihara, T. Shimomura, K. Ito, T. Hashizume, N. Ishii
and T. Aida, Science, 2004, 304, 1481–1483; (c)
M. Bendikov, F. Wudl and D. F. Perepichka, Chem. Rev.,
2004, 104, 4891–4946; (d) A. S. Tayi, A. K. Shveyd,
A. C.-H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao, 16 I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler,
T. J. Kennedy, A. A. Sarjeant, C. L. Stern, W. F. Paxton,
W. Wu, S. K. Dey, A. C. Fahrenbach, J. R. Guest,
C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, Acta
Crystallogr., Sect. B: Struct. Sci., 2002, 58, 389–397.
H. Mohseni, L. X. Chen, K. L. Wang, J. F. Stoddart and 17 A. Bondi, J. Phys. Chem., 1964, 68, 441–451.
S. I. Stupp, Nature, 2012, 488, 485–489; (e) A. Coskun, 18 It has been demonstrated theoretically that intramolecular
J. M. Spruell, G. Barin, W. R. Dichtel, A. H. Flood,
Y. Y. Botros and J. F. Stoddart, Chem. Soc. Rev., 2012, 41,
4827–4859.
halogen-bonding interactions of a strongly van der Waals
type are possible, see: M. P. Johansson and M. Swart, Phys.
Chem. Chem. Phys., 2013, 15, 11543–11553.
7 (a) R. S. Mulliken, J. Am. Chem. Soc., 1950, 72, 600–608; (b) 19 We attempted the co-crystallisation of mixtures of AX
G. R. Desiraju and R. Parthasarathy, J. Am. Chem. Soc.,
1989, 111, 8725–8726; (c) P. Metrangolo and G. Resnati,
Chem.–Eur. J., 2001, 7, 2511–2519; (d) P. Auffinger,
F. A. Hays, E. Westhof and P. Shing Ho, Proc. Natl. Acad.
Sci., 2004, 101, 16789–16794; (e) P. Metrangolo,
H. Neukirch, T. Pilati and G. Resnati, Acc. Chem. Res., 2005,
38, 386–395; (f) P. Politzer, P. Lane, M. C. Concha, Y. Ma
and J. S. Murray, J. Mol. Model., 2007, 13, 305–311; (g)
molecules with the anticipation that if [X/X] interactions
were signicant, mixed co-crystals would be formed
between AX molecules containing complementary halides.
We did not observe the formation of any co-crystals
characterised by ordered packing motifs, an observation
which suggests that the [O/X] interactions are the
dominant ones directing the assembly of the crystal
superstructures.
A. R. Voth, P. Khuu, K. Oishi and P. S. Ho, Nat. Chem., 20 D. G. Hamilton, D. E. Lynch, K. A. Byriel and C. H. Kennard,
2009, 1, 74–79; (h) P. Politzer, J. S. Murray and T. Clark, Aust. J. Chem., 1997, 50, 439–446.
Phys. Chem. Chem. Phys., 2013, 15, 11178–11189; (i) 21 (a) A.-C. C. Carlsson, J. Grafenstein, A. Budnjo, J. L. Laurila,
¨
T. M. Beale, M. G. Chudzinski, M. G. Sarwar and
M. S. Taylor, Chem. Soc. Rev., 2013, 42, 1667–1680; (j)
A. V. Jentzsch, A. Hennig, J. Mareda and S. Matile, Acc.
Chem. Res., 2013, 46, 2791–2800; (k) A. Mukherjee,
J. Bergquist, A. Karim, R. Kleinmaier, U. Brath and
´
M. Erdelyi, J. Am. Chem. Soc., 2012, 134, 5706–5715; (b)
´
M. Erdelyi, Chem. Soc. Rev., 2012, 41, 3547–3557.
4248 | Chem. Sci., 2014, 5, 4242–4248
This journal is © The Royal Society of Chemistry 2014