10.1002/chem.201903129
Chemistry - A European Journal
FULL PAPER
[8]
[9]
P. Upadhyaya, Z. Qian, N. G. Selner, S. R. Clippinger, Z. Wu, R.
Briesewitz, D. Pei, Angew. Chem. Int. Ed. 2015, 54, 7602-7606.
F. L. Zhang, P. J. Casey, Annu. Rev. Biochem. 1996, 65, 241-269.
8b disrupts membrane localization of K-Ras and its association
with c-Raf.
Because K-Ras must be localized to plasma membranes to be
functional,[39,40] chemical disruption of the process of membrane
localization remains an attractive therapeutic approach, and
various inhibitors of Rce,[41] Icmt,[42,43] PDE[44] and others are
under development. Although the activity of 8b remains moderate,
the results obtained in this study suggest that a molecular strategy
for targeting PPI interfaces between K-Ras and FTase and
GGTase I may provide a solution for overcoming the obstacles of
FTIs in K-Ras-directed anticancer clinical applications. One
limitation of 8b is its sensitivity to oxidation caused by sulphur
atoms in the peptidomimetic, and at present, it is unclear whether
8b inhibits geranylgeranylation of K-Ras in cells or the degree to
which downstream signals of K-Ras were perturbed by 8b. These
issues will need to be addressed in order to better understand the
mode of action. To that end, more metabolically stable agents
based on non-thiol-containing peptidomimetics are therefore
desirable. Work is currently underway in our laboratory towards
these goals.
[10] Examples of recent reviews: a) C. C. Palsuledesai, M. D. Distefano, ACS
Chem. Biol. 2015, 10, 51-62; b) N. Berndt, A. D. Hamilton, S. M. Sebti,
Nat. Rev. Cancer 2011, 11, 775-791.
[11] A. T. Placzek, A. J. Krzysiak, R. A. Gibbs, Enzymes 2011, 30, 91-127.
[12] G. L. James, J. L. Goldstein, M. S. Brown, J. Biol. Chem. 1995, 270, 6221.
[13] F. L. Zhang, P. Kirschmeier, D. Carr, L. James, R. W. Bond, L. Wang, R.
Patton, W. T. Windosor, R. Syto, R. Zhang, W. R. Bishop, J. Biol. Chem.
1997, 272, 10232-10239.
[14] D. B. Whyte, P. Kirschmeier, T. N. Hockenberry, I. Nunez-Oliva, L.
James, J. J. Catino, W. R. Bishop, J. Pai, J. Biol. Chem. 1997, 272,
14459-14464.
[15] C. A. Rowell, J. J. Kowalczyk, M. D. Lewis, A. M. Garcia, J. Biol. Chem.
1997, 272, 14093-14097.
[16] S. B. Long, P. J. Casey, L. S. Beese, Structure 2000, 8, 209-222.
[17] S. Machida, N. Kato, K. Harada, J. Ohkanda, J. Am. Chem. Soc. 2011,
133, 958-963.
[18] S. Machida, M. Tsubamoto, N. Kato, K. Harada, J. Ohkanda, Bioorg.
Med. Chem. 2013, 21, 4004-4010.
[19] I. Nakase, T. Takeuchi, G. Tanaka, S. Futaki, Adv. Drug. Deliver Rev.
2008, 60, 598-607.
[20] E. G. Stanzl, B. M. Trantow, J. R. Vargas, P. A. Wender, Acc. Chem.
Res. 2013, 46, 2944-2954.
[21] Example of recent review: S. Fletcher, C. G. Cummings, K. Rivas, W. P.
Katt, C. Horney, F. S. Buckner, D. Chakrabarti, S. B. Sebti, M. H. Gelb,
W. C. Van Voorhis, A. D. Hamilton, J. Med. Chem. 2008, 51, 5176-5197.
[22] D. Knowles, J. Sun, S. Rosenberg, S. M. Sebti, A. D. Hamilton, in
Farnesyltransferase Inhibitors in Cancer Therapy (Eds. S. M. Sebti A. D.
Hamilton), Humana Press, New Jersey, ch. 4, pp. 49-64.
[23] A. Vogt, Y. Qian, M. A. Blaskovich, R. D. Fossum, A. D. Hamilton, S. M.
Sebti, J. Biol. Chem. 1995, 270, 660-664.
Acknowledgements
This work was supported by JSPS (18H02106, 25288076,
26102727 to J.O.) and MEXT Grants (18H04394 to J.O.), and the
Nagase Science and Technology Foundation, Astellas
Foundation for Research on Metabolic Disorders, Naito
Foundation, and Uehara Foundation (J.O.). We thank the
Comprehensive Analysis Center at ISIR, Osaka University and A.
Oda of the Instrumental Center, Shinshu University for spectral
measurements, and K. Tanaka, F. Sugino, and S. Igaue for
characterization of compounds. J.O. sincerely thanks Profs. A. D.
Hamilton and S. M. Sebti for their valuable comments throughout
this work.
[24] Y. Cheng W. H. Prusoff, Biochem. Pharmacol. 1973, 22, 3099-3108.
[25] Y. Qian, Ph. D. thesis, University of Pittsburgh (USA), 1996.
[26] A. D. Cox, C. J. Der, Biochim. Biophys. Acta 1997, 1333, F51-71.
[27] J. B. Gibbs, A. Oliff, Annu. Rev. Pharmacol. Toxicol. 1997, 37, 143.
[28] S. M. Sebti, C. J. Der, Nat. Rev. Cancer 2003, 3, 945-951.
[29] J. Sun, J. Ohkanda, D. Coppola, H. Yin, M. Kothare, B. Busciglio, A. D.
Hamilton, S. M. Sebti, Cancer Res. 2003, 15, 8922-8929.
[30] Y. Qian, J. J. Marugan, R. D. Fossum, A. Vogt, S. M. Sebti, A. D.
Hamilton, Bioorg. Med. Chem. 1999, 7, 3011-3024.
Keywords: K-Ras • prenylation • protein-protein interactions •
[31] E. C. Lerner, Y. Qian, M. A. Blaskovich, R. D. Fossum, A. Vogt, J. Sun,
A. D. Cox, C. J. Der, A. D. Hamilton, S. M. Sebti, J. Biol. Chem. 1995,
270, 26802-26806.
bivalent inhibitors • c-Raf
[1]
[2]
J. L. Bos, Cancer Res. 1989, 49, 4682-4689.
[32] S. Machida, K. Usuba, M. A. Blaskovich, A. Yano, K. Harada, S. M. Sebti,
N. Kato, J. Ohkanda, Chem. Eur. J. 2008, 14, 1392-1401.
[33] J. Sun, M. A. Blaskovich, D. Knowles, Y. Qian, J. Ohkanda, R. D. Bailey,
A. D. Hamilton, S. M. Sebti, Cancer Res. 1999, 59, 4919-4926.
[34] F. L. Delarue, J. Adnane, B. Joshi, M. A. Blaskovichi, D-A. Wang, J.
Hawker, F. Bizouarn, J. Ohkanda, K. Zhu, A. D. Hamilton, S. Chellappan,
S. M. Sebti, Oncogene 2007, 26, 633-637.
A. Lièvre, J-B. Bachet, D. Le Corre, V. Boige, B. Landi, J-F. Emile, J. F.
Côté, G. Tomasic, C. Penna, M. Ducreux, P. Rougier, F. Penault-Liorca,
P. Laurent-Puig, Cancer Res. 2006, 66, 3992-3995.
[3]
[4]
A. D. Cox, S. W. Fesik, A. C. Kimmelman, J. Luo, C. J. Der, Nat. Rev.
Drug Discov. 2014, 13, 828-851.
F. Shima, Y. Yoshikawa, M. Ye, M. Araki, S. Matsumoto, J. Liao, L. Hu,
T. Sugimoto, Y. Ijiri, A. Takeda, Y. Nishiyama, C. Sato, S. Muraoka, A.
Tamura, T. Osoda, K. Tsuda, T. Miyakawa, H. Fukunishi, J. Shimada, T.
Kumasaka, M. Yamamoto, T. Kataoka, Proc. Natl. Acad. Sci. U.S.A.
2013, 110, 8182-8187.
[35] J. Sun, Y. Qian, A. D. Hamilton, S. M. Sebti, Oncogene 1998, 16, 1467-
1473.
[36] E. T. Efuet, K. Keyomarsi, Cancer Res. 2006, 66, 1040-1051.
[37] T. Watanabe, T. Seki, T. Fukano, A. Sakae-Sawano, S. Karasawa, M.
Kubota, H. Kurokawa, K. Inoue, J. Akatsuka, A. Miyawaki, Sci. Rep.
2017, 7, 46380.
[5]
[6]
J. M. Ostrem, U. Peters, M. L. Sos, J. A. Wells, K. M. Shokat, Nature
2013, 503, 548-551.
S. M. Lim, K. D. Westover, S. B. Ficarro, R. A. Harrison, H. G. Choi, M.
E. Pacold, M. Carrasco, J. Hunter, N. D. Kim, T. Zie, T. Sim, P. A. Janne,
M. Meyerson, J. A. Marto, J. R. Engen, N. S. Gray, Angew. Chem. Int.
Ed. 2014, 53, 199-204.
[38] M. P. Patricelli, M. R. Janes, L-S. Li, R. Hansen, U. Peters, L. V. Kessler,
Y. Chen, J. M. Kucharski, J. Feng, T. Ely, J. H. Chen, S. J. Firdaus, A.
Babbar, P. Ren, Y. Liu, Cancer Discov. 2016, 6, 316-329.
[39] P. J. Casey, P. A. Solski, C. J. Der, J. E. Buss, Proc. Natl. Acad. Sci. U.
S. A. 1989, 86, 8323-8327.
[7]
H. Waldmann, I-M. Karaguni, M. Carpintero, E. Gourzoulidou, C.
Herrmann, C. Brockmann, H. Oschkinat, O. Müller, Angew. Chem. Int.
Ed. 2004, 43, 454-458.
[40] J. F. Hancock, A. I. Magee, J. E. Childs, C. J. Marshall, Cell 1989, 57,
1167-1177.
This article is protected by copyright. All rights reserved.