Journal of the American Chemical Society
Communication
(3) For recent reviews, see: (a) Liu, D.; Zhao, G.; Xiang, L. Eur. J. Org.
Chem. 2010, 3975. (b) Zhang, D.; Song, H.; Qin, Y. Acc. Chem. Res.
2011, 44, 447.
(18) This technique could also be applied on crude imines directly after
solvent evaporation, as exemplified on 1a, although the yield was
somewhat lower (74% isolated yield, 90% ee). Unfortunately, no
product was observed on aliphatic imines, as demonstrated on (E)-2-
methyl-N-(2-vinylphenyl)propan-1-imine.
(19) The absolute configuration of 2s was determined to be 2R,3S by
X-ray analysis (see Table 2). Consequently, those of the other products
were assigned by analogy.
(4) (a) Wang, D.-S.; Chen, Q.-A.; Li, W.; Yu, C.-B.; Zhou, Y.; Zhang, X.
J. Am. Chem. Soc. 2010, 132, 8909. (b) Duan, Y.; Chen, M.-W.; Chen, Q.-
A.; Yu, C.-B.; Zhou, Y.-G. Org. Biomol. Chem. 2012, 10, 1235. (c) Duan,
Y.; Chen, M.-W.; Ye, Z.-S.; Wang, D.-S.; Chen, Q.-A.; Zhou, Y.-G.
Chem.Eur. J. 2011, 17, 7193. (d) Wang, D.-S.; Tang, J.; Zhou, Y.-G.;
Chen, M.-W.; Yu, C.-B.; Duan, Y.; Jiang, G.-F. Chem. Sci. 2011, 2, 803.
(e) Li, C.; Chen, J.; Fu, G.; Liu, D.; Liu, Y.; Zhang, W. Tetrahedron 2013,
69, 6839. (f) Duan, Y.; Li, L.; Chen, M.-W.; Yu, C.-B.; Fan, H.-J.; Zhou,
Y.-G. J. Am. Chem. Soc. 2014, 136, 7688. (g) Xiao, Y.-C.; Wang, C.; Yao,
Y.; Sun, J.; Chen, Y.-C. Angew, Chem. Int. Ed. 2011, 50, 10661.
(5) (a) Arp, F. O.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 14264.
́
(b) Lopez-Iglesias, M.; Busto, E.; Gotor, V.; Gotor-Fernandez, V. J. Org.
Chem. 2012, 77, 8049. (c) Saito, K.; Shibata, Y.; Yamanaka, M.; Akiyama,
T. J. Am. Chem. Soc. 2013, 135, 11740.
(6) (a) Katayev, D.; Nakanishi, M.; Burgi, T.; Kundig, P. E. Chem. Sci.
̈
̈
2012, 3, 1422. (b) Saget, T.; Lemouzy, S. J.; Cramer, N. Angew. Chem.,
Int. Ed. 2012, 51, 2238.
́
(7) Ruano, J. L. G.; Parra, A.; Marcos, V.; Pozo, C. D.; Catalan, S.;
Monteagudo, S.; Fustero, S.; Poveda, A. J. Am. Chem. Soc. 2009, 131,
9432.
(8) Kang, K. H.; Do, J.; Park, Y. S. J. Org. Chem. 2012, 77, 808.
(9) (a) Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc. 2013,
135, 15746. (b) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem.,
Int. Ed. 2013, 52, 10830.
(10) (a) Zhu, S.; Buchwald, S. L. J. Am. Chem. Soc. 2014, 136, 15913.
(b) Niljianskul, N.; Zhu, S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2014,
54, 1638. For related asymmetric Cu-catalyzed Markovnikov
hydroboration and aminoboration reactions of styrenes, see: (c) Lee,
Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3160. (d) Matsuda, N.;
Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2013, 135, 4934.
(e) Grigg, D. R.; Hoveln, R. V.; Schomaker, J. M. J. Am. Chem. Soc. 2012,
134, 16131. (f) Noh, D.; Chea, H.; Ju, J.; Yun, J. Angew. Chem., Int. Ed.
2009, 48, 6062. For reviews dealing with CuH-catalyzed reactions, see:
(g) Deutsch, C.; Krause, N.; Lipshutz, B. H. Chem. Rev. 2008, 108, 2916
and references therein. (h) Hesp, K. D. Angew. Chem., Int. Ed. 2014, 53,
2034. (i) Fujihara, T.; Semba, K.; Terao, J.; Tsuji, Y. Catal. Sci. Technol.
2014, 4, 1699.
(11) Although no examples of an analogous intramolecular coupling
reaction have been reported, an asymmetric intermolecular CuH-
catalyzed coupling between vinylazaarenes and (hetero)aryl N-Boc
imines has recently been developed;: Choi, B.; Saxena, A.; Smith, J. J.;
Churchill, G. H.; Lam, H. W. Synlett 2015, 26, 350.
(12) For examples of t-BuOH-accelerated CuH-catalyzed reactions,
see: (a) Chen, J.-X.; Daeuble, J. F.; Brestensky, D. M.; Stryker, J. M.
Tetrahedron 2000, 56, 2153. (b) Chen, J.-X.; Daeuble, J. F.; Stryker, J. M.
Tetrahedron 2000, 56, 2789. (c) Hughes, G.; Kimura, M.; Buchwald, S.
L. J. Am. Chem. Soc. 2003, 11253. (d) Lipshutz, B. H.; Servesko, J. M.;
Taft, B. R. J. Am. Chem. Soc. 2004, 126, 8352. (e) Rainka, M. P.; Aye, Y.;
Buchwald, S. L. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5821. (f) Lam, H.
W.; Saxena, A.; Rupnicki, L. J. Am. Chem. Soc. 2009, 131, 10386.
(13) For CuH-catalyzed hydrosilylation of imines, see: Lipshutz, B. H.;
Shimizu, H. Angew. Chem., Int. Ed. 2004, 43, 2228.
(14) For protonation of carbon−copper bonds with alcohols in related
CuH-catalyzed reactions, see: (a) Semba, K.; Fujihara, T.; Xu, T.; Terao,
J.; Tsuji, Y. Adv. Synth. Catal. 2012, 354, 1542. (b) Whittaker, A. M.;
Lalic, G. Org. Lett. 2013, 15, 1112. (c) Shi, S.-L.; Buchwald, S. L. Nat.
Chem. 2015, 7, 38.
(15) For a conceptually related process, see: Verdaguer, X.; Lange, U.
E. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 1998, 37, 1103.
(16) Hoveyda, in related Cu-catalyzed processes, has shown that
protonation of carbon−copper intermediates with MeOD-d4 is
significantly slower than the reaction with MeOH. Thus, kH/kD
=
2.7−3.6 have been measured. See: Jang, W.; Zhugralin, A. R.; Lee, Y.;
Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 7859.
(17) Lipshutz, B. H.; Noson, K.; Chrisman, W.; Lower, A. J. Am. Chem.
Soc. 2003, 125, 8779. See also ref 10a.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX