J. Am. Chem. Soc. 1998, 120, 6417-6418
6417
opened by an SN1 process to give a cationic intermediate
analogous to 9 that reacted with MeOH from both faces.
Hydroxyl-directed reduction13 of this mixture with sodium boro-
hydride in acetic acid gave 80% of a 1.1:1 mixture of alcohols
10a and 12a in which an alkoxy borohydride such as 9a is formed
from 7a and delivers a hydride intramolecularly to give 10a with
H and OH on the same face of the imidazoindolone. Hydro-
genolysis over Pd/C in MeOH proceeded quantitatively to give
11a and 13a. The structures of 11a and 13a were established by
NOE studies and confirmed for 11a by X-ray crystal structure
determination.14 Since the ratio of 10a to 12a is determined in
the epoxidation step, we investigated other oxidants. Use of 3-n-
butyl-1,2-benzisothiazole-1,1-dioxide oxide (26)15 followed by
reduction gave 60% of a 2.3:1 mixture favoring the desired isomer
10a while use of dimethyldioxirane16 afforded 80% of a 1:1.9
mixture favoring the undesired isomer 12a. More hindered
oxaziridines did not epoxidize 6a. Epoxidations with dioxiranes
often give very different stereoselectivity than those with peracids
and oxaziridines,17a and calculations indicate transition state
geometries for these reactions are quite different.17b
Total Syntheses of (-)-Asperlicin and (-)-Asperlicin
C
Feng He, Bruce M. Foxman, and Barry B. Snider*
Department of Chemistry, Brandeis UniVersity
Waltham, Massachusetts 02254-9110
ReceiVed March 20, 1998
We recently reported an efficient synthesis of the tripeptide
quinazolinone antibiotic fumiquinazoline G.1 To extend this
synthesis to the structurally more complex tetrapeptide members
of this family such as fumiquinazoline A (1),2-4 we needed to
develop a route to the 9-hydroxy-1H-imidazo(1,2-a)indol-3-one
moiety from the indole ring of tryptophan. This ring system also
occurs in the potent cholecystokinin antagonist asperlicin (2),5
but has only been synthesized in the stereochemically and
structurally simpler tryptoquivalines by Bu¨chi,6 Ban,7 and Naka-
gawa and Hino.8 The initial challenge was therefore to develop
a practical, stereochemically controlled method to the hydroxy-
imidazoindolone moiety 10 from a 3-alkyl indole.
A similar series of reactions with N-CBZ-L-leucine afforded
6b with the larger isobutyl side chain of asperlicin. Epoxidation
was now more selective for the less hindered R-face, giving 10b
and 12b as a 3.4:1 mixture with 26, a 1.7:1 mixture with m-CPBA,
and a 1:1.4 mixture with dimethyldioxirane. Hydrogenolysis
completed the model study, giving 11b with spectral data very
similar to that of asperlicin.
We chose to apply this procedure to the synthesis of asperlicin
since the top half of the molecule is more readily accessible than
that of fumiquinazoline A. Bock and co-wokers reported an
efficient synthesis of asperlicin C by reacting 14 with Lawesson’s
reagent to give a 1:1 mixture of monothioamides which were
separated; the desired thioamide was elaborated to 16 in two
steps.18 This synthesis can be improved by using the Eguchi
protocol for elaboration of a quinazolin-4-one onto an amide.1,19,20
Reaction of 14 with o-azidobenzoyl chloride,19,21 Et3N, and DMAP
occurred selectively on the more acidic anilide nitrogen, giving
exclusively the desired isomer 15 in 83% yield. Reaction of 15
with Bu3P in benzene at 60 °C formed the aza-Wittig reagent,
which cyclized to provide 80% of asperlicin C (16) (Scheme 2),
with spectra identical with those of the natural product.22
Condensation of 3-methylindoline (3)9 with N-CBZ-L-alanine
and DCC afforded 90% of the amide, which was oxidized10 with
DDQ in toluene at reflux to provide 90% of acylated indole 4a.
Mercuration11 of 4a with Hg(OTFA)2, exchange with KI, and then
iodination afforded 82% of iodoindole 5a and 14% of recovered
4a. The palladium-catalyzed amidation reaction recently devel-
oped by Buchwald (Pd2(dba)3, P(o-tolyl)3, K2CO3, toluene, 105
°C)12 provided 83% of 6a containing the crucial imidazoindolone
moiety.
Completion of the model study required the syn addition of H
and OH to the double bond of 6a. Hydroboration failed, so we
turned our attention to epoxidation-reduction sequences. Ep-
oxidation of 6a with m-CPBA in MeOH afforded 77% of a
mixture of four methoxy alcohols 7a and 8a, in which the epoxide
(1) He, F.; Snider, B. B. Synlett 1997, 483-484.
(13) (a) Saksena, A. K.; Manglaracina, P. Tetrahedron Lett. 1983, 24, 273-
276. (b) Hoveyda, A.; Evans, D. A.; Fu, G. Chem. ReV. 1993, 93, 1307-
1368.
(14) The authors have deposited atomic coordinates for the structure of
11a with the Cambridge Crystallographic Data Centre. The coordinates can
be obtained upon request from the Director, Cambridge Crystallographic
Centre, 12 Union Road, Cambridge, CB2 1EZ, UK.
(2) (a) Takahashi, C.; Matsushita, T.; Doi, M.; Minoura, K.; Shingu, T.;
Kumeda, Y.; Numata, A. J. Chem. Soc., Perkin Trans. 1 1995, 2345-2353.
(b) Numata, A.; Takahashi, C.; Matsushita, T.; Miyamoto, T.; Kawai, K.;
Usami, Y.; Matsumura, E.; Inoue, M.; Ohishi, H.; Shingu, T. Tetrahedron
Lett. 1992, 33, 1621-1624.
(3) Wong, S. M.; Musza, L. L.; Kydd, G. C.; Kulling, R.; Gillum, A. M.;
Cooper, R. J. Antibiot. 1993, 46, 545-553.
(15) (a) Davis, F. A.; Sheppard, A. C. Tetrahedron Lett. 1988, 29, 4365-
4368. (b) Davis, F. A.; Towson, J. C.; Vashi, D. B.; ThimmaReddy, R.;
McCauley, J. P., Jr.; Harakal, M. E.; Gosciniak, D. G. J. Org. Chem. 1990,
55, 1254-1261.
(4) Barrow, C. J.; Sun, H. H. J. Nat. Prod. 1994, 57, 471-476.
(5) (a) Goetz, M. A.; Lopez, M.; Monaghan, R. L.; Chang, R. S. L.; Lotti,
V. J.; Chen, T. B. J. Antibiot. 1985, 36, 1633-1637. (b) Liesch, J. M.; Hensens,
O. D.; Springer, J. P.; Chang, R. S. L.; Lotti, V. J. J. Antibiot. 1985, 36,
1638-1641. (c) Sun, H. H.; Byard, S. J.; Cooper, R. J. Antibiot. 1994, 47,
599-601.
(16) (a) Adam, W.; Bialas, J.; Hadjiarapoglou, L. Chem. Ber. 1991, 124,
2377. (b) Adam, W.; Reinhardt, D.; Reissig, H.-U.; Paulini, K. Tetrahedron
1995, 51, 12257-12262.
(6) Bu¨chi, G.; DeShong, P. R.; Katsumura, S.; Sugimura, Y. J. Am. Chem.
Soc. 1979, 101, 5084-5086.
(17) (a) Schwesinger, R.; Willaredt, J. In Methods of Organic Chemistry
(HoubenWeyl); Thieme: Stuttgart, 1995; Vol. E21e, pp 4601-4648. (b) Houk,
K. N.; Liu, J.; DeMello, N. C.; Condroski, K. R. J. Am. Chem. Soc. 1997,
119, 10147-10152.
(7) Ohnuma, T.; Kimura, Y.; Ban, Y. Tetrahedron Lett. 1981, 22, 4969-
4972.
(8) (a) Nakagawa, M.; Taniguchi, M.; Sodeoka, M.; Ito, M.; Yamaguchi,
K.; Hino, T. J. Am. Chem. Soc. 1983, 105, 3709-3710. (b) Nakagawa, M.;
Ito, M.; Hasegawa, Y.; Akashi, S.; Hino, T. Tetrahedron Lett. 1984, 25, 3865-
3868. (c) Nakagawa, M.; Sodeoka, M.; Yamaguchi, K.; Hino, T. Chem. Pharm.
Bull. 1984, 32, 1373-1384.
(18) (a) Bock, M. G.; DiPardo, R. M.; Pitzenberger, S. M.; Homnick C.
F.; Springer, J. P.; Freidinger, R. M. J. Org. Chem. 1987, 52, 1644-1646.
(b) Liesch, J. M.; Hensens, O. D.; Zink, D. L.; Goetz, M. A. J. Antibiot.
1988, 41, 878-881.
(19) Takeuchi, H.; Hagiwara, S.; Eguchi, S. Tetrahedron 1989, 45, 6375-
6386.
(9) Gribble, G. W.; Hoffman, J. H. Synthesis 1977, 859-860.
(10) Preobrazhenskaya, M. N. Russ. Chem. ReV. 1967, 36, 753-771.
(11) Mingoia, Q. Gazz. Chim. Ital. 1930, 60, 509-515.
(12) Wolfe, J. P.; Rennels, R. A.; Buchwald, S. L. Tetrahedron 1996, 52,
7525-7546.
(20) Marsden, S. P.; Depew, K. M.; Danishefsky, S. J. J. Am. Chem. Soc.
1994, 116, 11143-11144.
(21) Ardakani, M. A.; Smalley, R. K.; Smith, R. H. J. Chem. Soc., Perkin
Trans. 1 1983, 2501-2506.
S0002-7863(98)00940-8 CCC: $15.00 © 1998 American Chemical Society
Published on Web 06/11/1998