New Route to Os(II) Polypyridyl Complexes
Inorganic Chemistry, Vol. 37, No. 14, 1998 3615
(18) Å, consistent with OsIII.12 Shortening of the central Os-
N(tpy) bond length to 1.990(5) Å is apparent, compared with
the peripheral Os-N(tpy) bond lengths of 2.087(5) and 2.085-
(5) Å. The Os-N(tetr) bond length, 2.093(5) Å, is similar to
other metal tetrazolate complexes.17 To our knowledge, this is
the first Os-tetrazolato complex which has been isolated and
structurally characterized.
typical for metal azido complexes.22 14 exhibits an intense band
at 1295 cm-1 assignable to ν(NtS) (ν(15NtS) 1265 cm-1).
Several Os thionitrosyl complexes have been characterized by
infrared spectroscopy, and these results have been reviewed
elsewhere.23 The usual range for ν(NtS) is 1150-1400 cm-1
.
In the infrared spectrum of 13, bands at 1094 and 1295 cm-1
appear that can be assigned to tetrazolate ring modes as proposed
previously.24 Additional ring modes are expected but are
apparently obscured by tpy bands.
trans-[OsII(tpy)(Cl)2(NS)](SCN) (14). The crystal structure
of 14 (Figure 3) shows that the Cl- ligands are in the trans
configuration, a feature retained from 1. Os-Cl bond distances
are 2.366(2) and 2.360(2) Å. The Os-N(S) and the N-S bond
distances are 1.834(7) and 1.459(8) Å. The N-S bond length
in the NS+ ion is 1.495 Å.18 The Os-N-S is almost linear,
at 178.5(5)° consistent with thionitrosyl coordinated as “NS+”
rather than “NS-”. In structurally characterized OsII(PPh3)2-
(Cl)3(NS), Os-N(S) and the N-S bond distances are 1.779(9)
and 1.503(10) Å, respectively, and Os-N-S is 180.0(1)°.19
For comparison, in trans-[OsII(tpy)(Cl)2(NO)](BF4) the Os-
N(O) and N-O bond distances are 1.704(14) and 1.188(19) Å
and Os-N-O is 176.6(10)°.4 Os-N(thionitrosyl) bond
lengths in the literature fall in the range of 1.73-1.84 Å,19
consistent with sp hybridization if the NS ligand is treated as a
3e- donor. This predicts multiple bond character in the M-N
bond in agreement with the short M-N bond distances and the
linearity of the thionitrosyl.
In the electrochemical studies (Table 6), the OsII and OsIII
nitrile complexes exhibit waves corresponding to OsIII/OsII and
OsIV/OsIII couples. More specifically, for 3 a reversible OsIII/
OsII couple appears at E1/2 ) +0.15 V and a reversible OsIV/
OsIII couple at E1/2 ) +1.46 V, in CH2Cl2, vs SSCE in 0.1 M
TBAH. Similar results were obtained for OsII nitriles 4-6. For
8, a reversible OsIII/OsII couple appears at E1/2 ) +0.04 V and
a reversible OsIV/OsIII couple at E1/2 ) +1.37 V, in CH3CN, vs
SSCE in 0.1 M TBAH. For 15 there are reversible OsIII/OsII
and OsIV/OsIII couples at E1/2 ) +0.41 V and E1/2 ) +1.87 V,
respectively, in CH3CN, vs SSCE in 0.1 M TBAH.7 Ligand-
based (bpy) reductions appear at -1.45 and -1.72 V.
In cyclic voltammograms of 10, a reversible OsIII/OsII wave
appears at E1/2 ) +0.06 V and chemically irreversible OsIV/
OsIII couple at Ep,a ) +0.85 V in CH3CN. After minutes, waves
corresponding to the OsIII/OsII and OsIV/OsIII couples of 3
appear. Apparently, in this solvent N3- f OsIII intramolecular
electron transfer takes place to give 3 and N2. The OsII pyridine
complexes exhibit E1/2 values for OsIII/OsII and OsIV/OsIII
couples at +0.12 and +1.49 V, for 11, and +0.08 and +1.46
V, for 12, respectively. In cyclic voltammograms of 7 in DMF,
reversible OsIII-OsII/OsII-OsII and OsIII-OsIII/OsIII-OsII couples
appear at +0.21 and +0.77 V vs SSCE (∆E1/2 ) 560 mV).
The propereties of the mixed-valence form have been described
and are discussed elsewhere.6
Spectroscopic and Electrochemical Studies. The results
of UV-vis and electrochemical studies are compiled in Table
6. The UV-vis spectra of the OsII complexes are dominated
by intense OsII f tpy or OsII f bpy MLCT bands in the visible
region and intense π f π*(tpy) or π f π*(bpy) bands in the
UV region.6,7
For the OsII and OsIII nitrile complexes ν(CtN) appears in
the infrared at 2190-2260 cm-1 of medium-to-strong intensity,
consistent with Os-N end-on binding.20 ν(NtN) for 2 appears
at 2090 cm-1, shifted by 28 cm-1 to 2062 cm-1 in 2* (calculated
33 cm-1). Several other N2 complexes exhibit intense ν(NtN)
bands in this region.21 For comparison, in OsII(tpm)(Cl)2(N2)
ν(NtN) appears at 2068 cm-1 in KBr (ν(15Nt14N) at 2032
cm-1).1 In µ-N2-bridged 7 a very weak ν(NtN) stretch appears
at 2035 cm-1 in KBr (ν(15Nt15N) appears at 1972 cm-1).
E1/2 values for the OsIII/II and OsIV/III couples of 13 are -0.26
and +1.01 V, respectively, in 0.1 M TBAH, vs SSCE, in
DMSO. In cyclic voltammograms of 14 in CH3CN, a reversible
ligand-based reduction wave is observed at -0.30 V vs SSCE
in 0.1 M TBAH. Similar ligand-based reductions have been
observed in OsII-NO complexes.25 No oxidation waves are
observed for 14 to the solvent limit.
For 10 a very intense ν(N3) vibration appears at 2041 cm-1
,
Discussion
(17) (a) Gaughan, A. P.; Bowman, K. S.; Dori, Z. Inorg. Chem. 1972, 11,
601. (b) Jime´nez-Sandoval, O.; Cea-Olivares, R.; Herna´ndez-Ortega,
S.; Silaghi-Dumitrescu, I. Heteroatom Chem. 1997, 8, 351. (c)
Wijnands, P. E. M.; Wood, J. S.; Reedijk, J.; Maaskant, W. J. A. Inorg.
Chem. 1996, 35, 1214. (d) Gallardo, H.; Begnini, I. M.; Vencato, I.
Acta Crystallogr. 1997, C53, 143. (e) van den Heuvel, E. J.; Franke,
P. L.; Verscoor, G. C.; Zuur, A. P. Acta Crystallogr. 1983, C39, 337.
(18) Barrow, R. F.; Warm, R. J.; Fitzerald, A. G.; Fyoffe, B. D. Trans.
Faraday Soc. 1964, 60, 294.
In this manuscript we document the extraordinarily rich
reactivity chemistry that exists between 1 and N3
summarized in Figure 4. In all cases, the basic chemistry is
the same, attack of a redox nucleophile on a coordinated ligand,
in competition with electron transfer.
-
. It is
(19) Roesky, H. W.; Pandey, K. K.; Clegg, W.; Noltemeyer, M.; Sheldrick,
G. M. J. Chem. Soc., Dalton Trans. 1984, 719.
(22) (a) Kane-Maguire, L. A. P.; Sheridan, P. S.; Basolo, F.; Pearson, R.
G. J. Am. Chem. Soc. 1970, 92, 5865. (b) Reed, J. L.; Gafney, H. D.;
Basolo, F. J. Am. Chem. Soc. 1974, 96, 1363. (c) Dori, Z.; Ziolo, R.
F. Chem. ReV. 1973, 73, 247. (d) Azides and Nitrenes: ReactiVity
and Utility, Scriven, E. F. V., Ed.; Academic Press: Orlando, FL,
1984; and references therein. (e) Chemistry of Pseudohalides; Golub,
A. M., Ko¨hler, H., Eds.; Elsevier Publishers: Amsterdam, 1986. (f)
The Chemistry of Halides, Pseudohalides, and Azides (Chemistry of
Functional Groups. Supplement D2); Patai, S., Rappoport, Z., Eds.;
Interscience: Chichester, U.K., 1995.
(23) (a) Roesky, H. W.; Pandey, K. K. AdV. Inorg. Chem. Radiochem. 1983,
26, 337 and references therein. (b) Pandey, K. K. Prog. Inorg. Chem.
1992, 40, 445 and references therein.
(24) (a) John, E. O.; Willett, R. D.; Scot, B.; Kirchmeier, R. L.; Shreeve,
J. M. Inorg. Chem. 1989, 28, 893. (b) Franke, P. L.; Groeneveld, W.
L. Transition Met. Chem. 1981, 6, 54.
(20) (a) Sekine, M.; Harman, W. D.; Taube, H. Inorg. Chem. 1988, 27,
3604. (b) Johnson, A.; Taube, H. J. Indian Chem. Soc. 1989, 66, 503.
(c) Endres, H. In ComprehensiVe Coordination Chemistry; Wilkinson,
G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamor: London, 1987;
Vol. 2, p 261. (d) Nakamoto, K. Infrared and Raman Spectra of
Inorganic and Coordination Compounds; Wiley-Interscience: New
York, 1986.
(21) (a) Henderson, R. A.; Leigh, G. J.; Pickett, C. J. AdV. Inorg. Chem.
Radiochem. 1983, 27, 197 and references therein. (b) Hidai, M.;
Mizobe, Y. Chem. ReV. 1995, 95, 1115 and references therein. (c)
Fergusson, J. E.; Love, J. L.; Robinson, W. T. Inorg. Chem. 1972,
11, 1662. (d) Lay, P. A.; Taube, H. Inorg. Chem. 1989, 28, 3561. (e)
Albertin, G.; Antoniutti, S.; Baldan, D.; Bordignon, E. Inorg. Chem.
1995, 34, 6205. (f) Bianchini, C.; Linn, K.; Masi, D.; Peruzzini, M.;
Polo, A.; Vacca, A.; Zanobini, F. Inorg. Chem. 1993, 32, 2366. (g)
Dilworth, J. R.; Richards, R. L. In ComprehensiVe Organometallic
Chemistry; Wilkinson, G., Stone, F. G. A.; Abel, E. W., Eds.;
Pergamon: Oxford, U.K., 1982; Vol. 8, p 1073.
(25) (a) Murphy, W. R., Jr.; Takeuchi, K. J.; Meyer, T. J. J. Am. Chem.
Soc. 1982, 104, 5817. (b) Pipes, D. W.; Meyer, T. J. Inorg. Chem.
1984, 23, 2466. (c) Ooyama, D.; Nagao, H.; Ito, K.; Nagao, N.; Howell,
F. S.; Mukaida, M. Bull. Chem. Soc. Jpn. 1997, 70, 2141.