SYNTHESIS
August 1998
1191
Table 12. Characterization (1H, 13C NMR) of Compounds 5a–5m Prepared
Product 1H NMR (CDCl3/TMS, 200 MHz) δ, J (Hz)
13C NMR (CDCl3/TMS, 50 MHz) δ
5a
9.01 (1H, d, J = 2.0, H-7), 8.88 (1H, d, J = 2.0, H-6), 7.65– 168.12 (CO2), 161.59 (C-8a), 160.26 (C-4), 154.00 (C-2), 151.08
7.48 (5H, m, C6H5), 4.78 (2H, s, NCH2CO), 3.78 (3H, s, (C-7), 145.45 (C-6), 134.08 (C-4a), 132.53 (C′-1), 131.37 (C′-4),
OCH3)
129.36 (C′-2), 128.27 (C′-3), 53.06 (OCH3), 48.41 (NCH2CO)
5b
8.99 (1H, d, J = 2.0, H-7), 8.85 (1H, d, J = 2.0, H-6), 7.64– 168.34 (CO2), 162.22 (C′-4), 161.90 (C-4), 160.24 (C-8a), 154.10
7.57 (2H, m, C6H4), 7.06–6.99 (2H, m, C6H4), 4.82 (2H, s, (C-2), 151.05 (C-7), 145.23 (C-6), 132.41 (C-4a), 130.36 (C′-2),
NCH2CO), 3.89 (3H, s, C6H4OCH3), 3.80 (3H, s, CO2CH3)
126.32 (C′-1), 114.70 (C′-3), 55.67 (C6H4OCH3), 53.10 (CO2CH3),
48.79 (NCH2CO)
5c
5d
5f
9.05 (1H, d, J = 2.0, H-7), 8.93 (1H, d, J = 2.2, H-6), 8.45– 167.95 (CO2), 161.15 (C-4), 158.11 (C-8a), 153.77 (C-2), 151.31
8.38 (2H, m, C6H4), 7.89–7.83 (2H, m, C6H4), 4.73 (2H, s, (C-7), 149.61 (C′-4), 146.13 (C-6), 139.72 (C′-1), 132.78 (C-4a),
NCH2CO), 3.80 (3H, s, OCH3)
129.80 (C′-2), 124.63 (C′-3), 53.40 (OCH3), 48.15 (NCH2CO)
8.96 (1H, d, J = 2.0, H-7), 8.82 (1H, d, J = 2.0, H-6), 5.03 168.10 (CO2), 166.44 (C-8a), 161.70 (C-4), 154.09 (C-2), 150.83
(2H, s, NCH2CO), 3.83 (3H, s, OCH3), 2.98 [1H, septet, J = (C-7), 144.99 (C-6), 132.23 (C-4a), 53.24 (OCH3), 44.86
6.6, CH(CH3)2], 1.45 [6H, d, J = 6.6, CH(CH3)2]
(NCH2CO), 33.05 [CH(CH3)2], 21.05 [CH(CH3)2]
9.00 (1H, d, J = 2.2, H-7), 8.87 (1H, d, J = 2.0, H-6), 7.70– 161.58 (C-4), 161.04 (C-8a), 153.92 (C-2), 150.95 (C-7), 145.31
7.46 (5H, m, C6H5), 5.93 (1H, ddt, J = 17.3, 10.3, 5.2, (C-6), 134.62 (C′-1), 132.71 (C-4a), 131.69 (CH2CH=CH2), 131.08
CH2CH=CH2), 5.23 [1H, ddd, J = 10.4, 2.3, 1.5, CH=CH2 (C′-4), 128.92 (C′-2), 128.44 (C′-3), 118.88 (CH=CH2), 49.36
(cis)], 5.00 [1H, ddd, J = 17.2, 2.4, 1.6, CH=CH2 (trans)], (NCH2CH=CH2)
4.74 (2H, dt, J = 5.4, 1.6, NCH2CH=CH2)
5g
8.98 (1H, d, J = 2.0, H-7), 8.86 (1H, d, J = 2.0, H-6), 7.63– 161.76 (C-4), 161.00 (C-8a), 153.80 (C-2), 150.84 (C-7), 145.21
7.51 (5H, m, C6H5), 4.08 (2H, t, J = 7.7, NCH2CH2), 1.70 (C-6), 134.98 (C′-1), 132.72 (C-4a), 130.85 (C′-4), 129.09 (C′-2),
(2H, sextet, J = 7.6, CH2CH2CH3), 0.79 (3H, t, J = 7.5, 128.21 (C′-3), 48.58 (NCH2CH2), 21.90 (CH2CH2CH3), 11.08
CH2CH3)
(CH2CH3)
5h
5i
8.96 (1H, d, J = 2.0, H-7), 8.83 (1H, d, J = 2.0, H-6), 7.60– 161.93 (C-4), 161.29 (C-8a), 153.40 (C-2), 150.69 (C-7), 145.08
7.54 (5H, m, C6H5), 4.48 [1H, septet, J = 6.8, NCH(CH3)2], (C-6), 135.75 (C′-1), 133.51 (C-4a), 130.73 (C′-4), 129.21 (C′-2),
1.64 [6H, d, J = 6.8, CH(CH3)2]
127.72 (C′-3), 55.57 [NCH(CH3)2], 19.47 [CH(CH3)2]
8.94 (1H, d, J = 1.6, H-7), 8.80 (1H, d, J = 1.8, H-6), 7.62– 162.20 (C′-4), 161.74 (C-4), 161.28 (C-8a), 153.47 (C-2), 150.65
7.54 (2H, m, C6H4), 7.08–7.01 (2H, m, C6H4), 4.58 [1H, sep- (C-7), 144.86 (C-6), 133.36 (C-4a), 129.77 (C′-2), 127.96 (C′-1),
tet, J = 6.8, NCH(CH3)2], 3.90 (3H, s, OCH3), 1.67 [6H, d, J 114.51 (C′-3), 55.61 [OCH3 and NCH(CH3)2 may be overlapped],
= 6.8, CH(CH3)2]
19.65 [NCH(CH3)2]
5j
8.99 (1H, d, J = 2.0, H-7), 8.88 (1H, d, J = 2.2, H-6), 8.47– 161.51 (C-4), 158.98 (C-8a), 153.18 (C-2), 150.92 (C-7), 149.30
8.40 (2H, m, C6H4), 7.84–7.77 (2H, m, C6H4), 4.31 [1H, sep- (C′-4), 145.77 (C-6), 141.47 (C′-1), 133.75 (C-4a), 129.10 (C′-2),
tet, J = 6.8, NCH(CH3)2], 1.67 [6H, d, J = 6.8, CH(CH3)2]
124.61 (C′-3), 55.98 [NCH(CH3)2], 19.56 [NCH(CH3)2]
5k
8.96 (1H, d, J = 2.0, H-7), 8.84 (1H, d, J = 2.0, H-6), 7.75 161.74 (C-4), 161.64 (C-8a), 153.27 (C-2), 150.58 (C-7), 144.99
(5H, s, C6H5), 4.20 [1H, d-quintet, 9.0, 6.5, (C-6), 135.72 (C′-1), 133.22 (C-4a), 130.56 (C′-4), 129.11 (C′-2),
J
=
NCH(CH3)CH2], 2.36 (1H, d-quintet, J = 15.5, 7.5, 127.56 (C′-3), 61.68 [NCH(CH3)CH2], 25.99 (CHCH2CH3), 18.21
CHCH2CH3), 1.88 (1H, dqd, J = 14.0, 7.5, 6.5, CHCH2CH3), (CHCH3), 11.60 (CH2CH3)
1.67 (3H, d, J = 7.0, CHCH3), 0.73 (3H, t, J = 7.5, CH2CH3)
5l
8.90 (1H, d, J = 2.2, H-7), 8.77 (1H, d, J = 2.2, H-6), 7.71– 165.07 (C-4), 161.55 (C-8a), 152.41 (C-2), 150.34 (C-7), 144.58
7.66 (2H, m, C6H5), 7.55–7.45 (3H, m, C6H5), 1.55 [9H, s, (C-6), 140.06 (C′-1), 133.41 (C-4a), 130.98 (C′-4), 128.85 (C′-2),
C(CH3)3]
128.57 (C′-3) 65.71 [NC(CH3)3], 31.08 [C(CH3)3]
5m
8.96 (1H, d, J = 2.0, H-7), 8.83 (1H, d, J = 2.0, H-6), 7.55 161.97 (C-4), 161.75 (C-8a), 153.40 (C-2), 150.73 (C-7), 145.16
(5H, s, C6H5), 5.49 (1H, dddd, J = 17.0, 10.0, 8.4, 6.3, (C-6), 135.80 (C′-1), 134.34 (CH2CH=CH2), 133.39 (C-4a), 130.72
CH2CH=CH2), 4.97 [1H, dq, J = 16.8, 1.0, CH=CH2 (trans)], (C′-4), 129.22 (C′-2), 127.97 (C′-3), 118.92 (CH=CH2), 59.46
4.92 [1H, dq, J = 10.0, 1.0, CH=CH2 (cis)], 4.36 [1H, dqd, J [NCH(CH3)CH2], 36.99 (CHCH2CH=CH2), 18.00 (CHCH3)
= 9.1, 6.8, 6.1, NCH(CH3)CH2], 3.15 (1H, dddt, J = 14.2, 9.2,
8.4, 1.0, CHCH2CH=CH2), 2.53 (1H, dtt, J = 14.2, 6.3, 1.3,
CHCH2CH=CH2), 1.69 (3H, d, J = 6.8, CHCH3)
N-Allyl-3-aminopyrazine-2-carboxamide (2e); Typical Proce-
dure:
The exchange reactions of ester derivative 3 to sec-amide derivatives
(see Scheme 2).
Methyl 3-aminopyrazine-2-carboxylate (3) (308 mg, 2.01 mmol) was
dissolved in allylamine (10.0 mL) and to this solution was added
DBU (0.30 mL, 2.01 mmol). The resultant solution was stirred at r.t.
and washed with water (50 mL), sat. Na2CO3 (50 mL), water (50 mL)
and sat. brine (50 mL) successively. The combined organic layer was
dried (MgSO4) and evaporated under reduced pressure to afford the
crude product, which was purified by recrystallization from EtOAc
and hexane to give secondary amide derivative 2a (pale yellow nee-
dles, 841 mg, 78%). The other secondary amide derivatives 2b–2d
were also obtained by the similar method (see, Table 1).