M. Cichorek, et al.
Biomedicine&Pharmacotherapy130(2020)110515
Appendix A. Supplementary data
[22] R. Fisher, L. Pusztai, C. Swanton, Cancer heterogeneity: implications for targeted
[23] J. Tsoi, L. Robert, K. Paraiso, C. Galvan, K.M. Sheu, J. Lay, et al., Multi-stage dif-
ferentiation defines melanoma subtypes with differential vulnerability to drug-in-
duced iron-dependent oxidative stress, Cancer Cell 33 (2018) 890–904, https://doi.
[24] E. Wee, R. Wolfe, C. Mclean, J.W. Kelly, Y. Pan, Clinically amelanotic or hypo-
melanotic melanoma: anatomic distribution, risk factors, and survival, J. Am. Acad.
[25] A. Slominski, T.K. Kim, A. Brozyna, Z. Janjetovic, D.L.P. Brooks, L.P. Schwab, et al.,
The role of melanogenesis in regulation of melanoma behavior: melanogenesis leads
to stimulation of HIF-1α expression and HIF-dependent attendant pathways, Arch.
Supplementary material related to this article can be found, in the
References
[1] S.A. Rosenberg, J.C. Yang, R.M. Sherry, U.S. Kammula, M.S. Hughes, G.Q. Phan,
et al., Durable complete responses in heavily pretreated patients with metastatic
melanoma using T cell transfer immunotherapy, Clin. Cancer Res. 17 (2011)
[2] A. Ribas, R. Kefford, M.A. Marshall, C.J. Punt, J.B. Haanen, M. Marmol, et al., Phase
III randomized clinical trial comparing tremelimumab with standard-of care che-
motherapy in patients with advanced melanoma, J. Clin. Oncol. 31 (2013)
[26] H.Z. Gong, H.Y. Zheng, J. Li, Amelanotic melanoma, Melanoma Res. 29 (2019)
[27] L. Gualandri, R. Betti, C. Crosti, Clinical features of 36 cases of amelanotic mela-
nomas and considerations about the relationship between histologic subtypes and
diagnostic delay, J. Eur. Acad. Dermatol. Venereol. 23 (2009) 283–287, https://doi.
[28] N.E. Thomas, A. Kricker, W.T. Waxweiler, P.M. Dillon, K.J. Busman, L. From L,
et al., Comparison of clinicopathologic features and survival of histopathologically
amelanotic and pigmented melanomas: a population-based study, JAMA Dermatol.
[29] T. Wasiewicz, P. Szyszka, M. Cichorek, Z. Janjetovic, R.C. Tuckey, A.T. Slominski,
et al., Antitumor effects of vitamin D analogs on hamster and mouse melanoma cell
lines in relation to melanin pigmentation, Int. J. Mol. Sci. 16 (2015) 6645–6667,
[30] K.G. Chen, R.D. Leapman, G. Zhang, B. Lai, J.C. Valencia, C.O. Cardarelli, et al.,
Influence of melanosome dynamics on melanoma drug sensitivity, J. Natl. Cancer
[31] B.S. Larsson, Interaction between chemicals and melanin, Pigment Cell Res. 6
[32] M. Pawlikowska, J. Piotrowski, T. Jędrzejewski, W. Kozak, A.T. Slominski,
A.A. Brożyna, Coriolus versicolor-derived protein-bound polysaccharides trigger
the caspase-independent cell death pathway in amelanotic but not melanotic mel-
[33] M. Gensicka-Kowalewska, G. Cholewiński, K. Dzierzbicka, Recent developments in
the synthesis and biological activity of acridine/acridone analogues, RSC Adv. 7
[34] M. Kukowska M, Amino acid or peptide conjugates of acridine/acridone and qui-
noline/quinolone-containing drugs. A critical examination of their clinical effec-
tiveness within a twenty-year timeframe in antitumor chemotherapy and treatment
[36] G. Moloney, D. Kelly, P. Mack, Synthesis of acridine-based DNA bis-intercalating
[37] Z. Mazerska, J. Dziegielewski, J. Konopa, Enzymatic activation of a new antitumour
drug, 5-diethylaminoethylamino-8-hydroxyimidazoacridinone, C-1311, observed
after its intercalation into DNA, Biochem. Pharmacol. 61 (2001) 685–694, https://
[3] J. Schachter, A. Ribas, G.V. Long, A. Arance, J.J. Grob, L. Mortier, et al.,
Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival
results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006),
[4] J.L. da Silva, A.L.S. Dos Santos, N.C.C. Nunes, F. de Moraes Lino da Silva,
C.G.M. Ferreira, A.C. de Melo, Cancer immunotherapy: the art of targeting the
tumor immune microenvironment, Cancer Chemother. Pharmacol. 84 (2019)
[5] M. Polkowska, P. Ekk-Cierniakowski, E. Czepielewska, W. Wysoczański,
W. Matusewicz, M.J. Kozłowska-Wojciechowska MJ, Survival of melanoma patients
treated with novel drugs: retrospective analysis of real-world data, Cancer Res. Clin.
[7] P.R. Pereira, A.N. Odashiro, L.A. Lim, C. Miyamoto, P.L. BlancoL, M. Odashiro,
et al., Current and emerging treatment options for uveal melanoma, Clin.
[8] S. Mourah, B. Louveau, N. Dumaz, Mechanisms of resistance and predictive bio-
markers of response to targeted therapies and immunotherapies in metastatic
[9] M. Cichorek, M. Wachulska, A. Stasiewicz, A. Tymińska, Skin melanocytes: biology
[10] R. Rabbie, P. Ferguson, C. Molina-Aguilar, D.J. Adams, C.D. Robles-Espinoza,
Melanoma subtypes: genomic profiles, prognostic molecular markers and ther-
[11] G. Palmieri, M.N. Ombra, M. Colombino, M. Casula, M.C. Sini, A. Manca, et al.,
Multiple molecular pathways in melanomagenesis: characterization of therapeutic
[12] H.A. Mejbel, S.K.C. Arudra, D. Pradhan, C.A. Torres-Cabala, P. Nagarajan,
M.T. Tetzlaff, et al., Immunohistochemical and molecular features of melanomas
exhibiting intratumor and intertumor histomorphologic heterogeneity, Cancers
[13] F. Rambow, J.-Ch. Marine, C.R. Goding, Melanoma plasticity and phenotypic di-
versity: therapeutic barriers and opportunities, Genes Dev. (33) (2019) 1295–1318,
[38] B. Zhang, X. Li, B. Li, C. Gao, Y. Jiang, Acridine and its derivatives: a patent review
[14] T. Grzywa, W. Paskal, P. Wlodarski, Intratumor and intertumor heterogeneity in
[39] J. Jesek, J. Hlavacek, J. Sebestik, Biomedical applications of acridines, in:
K.D. Rainsford (Ed.), Progress in Drug Research 72, Springer International
[40] M. Cichorek, A. Ronowska, M. Gensicka-Kowalewska, M. Deptula, I. Pelikant-
Malecka, K. Dzierzbicka, Novel therapeutic compound acridine-retrotuftsin action
on biological forms of melanoma and neuroblastoma, J. Cancer Res. Clin. Oncol.
[44] G. Rouband, R. Faure, J.P. Galy, H-1 and C-13 chemical shifts for acridines: part
XVIII. 9-chloroacridine and 9-(N-allyl)- and 9-(N-propargyl)acridinamine deriva-
[46] K. Dzierzbicka, A.M. Kołodziejczyk, B. Wysocka-Skrzela, A. Myśliwski,
D. Sosnowska, Synthesis and antitumor activity of conjugates of muramyldipeptide,
normuramyl dipeptide, and desmuramylpeptides with acridine/acridone deriva-
[47] K. Dzierzbicka, A.M. Kołodziejczyk, Synthesis and antitumor activity of conjugates
of muramyldipeptide or normuramyldipeptide with hydroxy-acridine/acridone
[15] L. Boeckmann, A.C. Nickel, C. Kuschal, A. Schaefer, K.M. Thoms, M.P. Schön, et al.,
Temozolomide chemoresistance heterogeneity in melanoma with different treat-
ment regimens: DNA damage accumulation contribution, Melanoma Res. 21 (2011)
[16] S.C. Searles, E.K. Santosa, J.D. Bui, Cell-cell fusion as a mechanism of DNA ex-
[17] A. Avagliano, G. Fiume, A. Pelagalli, G. Sanità, M.R. Ruocco, S. Montagnani,
A. Arcucci, Metabolic plasticity of melanoma cells and their crosstalk with tumor
[18] R. Avolio, D.S. Matassa, D. Criscuolo, M. Landriscina, F. Esposito, Modulation of
mitochondrial metabolic reprogramming and oxidative stress to overcome che-
[19] M. Saez-Ayala, M.F. Montenegro, L. Sanchez-Del-Campo, M.P. Fernandez-Perez,
S. Chazarra, R. Freter, et al., Directed phenotype switching as an effective anti-
[20] F.G. Cordaro, A.L. De Presbiteris, R. Camerlingo, N. Mozzillo, G. Pirozzi,
E. Cavalcanti, et al., Phenotype characterization of human melanoma cells resistant
[21] F. Ahmed, N.K. Haass, Microenvironment-driven dynamic heterogeneity and phe-
notypic plasticity as a mechanism of melanoma therapy resistance, Front. Oncol.
[48] M. Robin, R. Faure, A. Perichaud, J.P. Galy, Synthesis of new thiazolo[5,4-a]acri-
10