732
C. Y. Watson et al./Bioorg. Med. Chem. 6 (1998) 721±734
(5 H, m, Ph-H5), 7.65 (1 H, t, J=7.7 Hz, isoquinoline 7-
H), 7.78 (1 H, d, J=6.1 Hz, isoquinoline 4-H), 7.9 (2 H,
m, isoquinoline 6,8-H2), 8.41 (1 H, d, J=6.1 Hz, iso-
quinoline 3-H), 9.20 (1 H, s, isoquinoline 1-H); MS (EI)
m/z 236.1030 (M) (13C12C15H13NO requires 236.1030),
235.0993 (M) (12C16H13NO requires 235.0997).
7.8 Hz, dioxole 5-H), 4.45 (1 H, dd, J=7.8, 5.5 Hz,
dioxole 4-H), 6.87 (1 H, d, J=7.3 Hz, isoquinoline 4-H),
7.29 (1 H, d, J=7.3 Hz, isoquinoline 3-H), 7.50 (1 H, t,
J=7.9 Hz, isoquinoline 7-H), 7.61 (1 H, d, J=7.9 Hz,
isoquinoline 6-H), 8.34 (1 H, d, J=7.9 Hz, isoquinoline
8-H), 11.15 (1 H, br, NH); MS (FAB) m/z 302.1384
(M+H) (12C17H20NO4 requires 302.1392).
E-3-(1-Oxoisoquinolin-5-yl)propenoic acid (43). 5-Iodoiso-
quinolin-1-one 4224 (100mg, 370 mmol) was boiled
under re¯ux with propenoic acid (35 mg, 490 mmol),
Pd(OAc)2 (8.0 mg, 37 mmol) and Et3N (93 mg, 920 mmol)
in EtCN (0.3 mL) for 1 h. Dilute HCl (10 mL) was
added. The precipitate was washed with water and was
5-(E-5-Hydroxypent-1-enyl)isoquinolin-1-one (47), 5-(4-
hydroxy-1-methylenebutyl)isoquinolin-1-one (48), 5-(5-
oxopentyl)isoquinolin-1-one (49) and 5-(RS-4-oxo-1-
methylbutyl)isoquinolin-1-one (50). 5-Iodoisoquinolin-1-
one 4224 (400 mg, 1.5 mmol) was boiled under re¯ux
with pent-4-enol (170 mg, 1.9 mmol), Pd(OAc)2 (32 mg,
140 mmol) and Et3N (370 mg, 3.7 mmol) in EtCN
(1.5 mL) for 2 h. The evaporation residue, in EtOAc,
was washed with dilute HCl, with water and with brine,
and was dried. Evaporation and chromatography
(EtOAc:MeOH, 99:1) gave unreacted 42 (221 mg, 55%).
Further elution gave a mixture of 49 (5% by NMR) and
dried to give 43 (76 mg, 97%) as an o-white solid: mp
315±318 ꢀC; IR 3550, 1695, 1660 cm
1
;
1H NMR
((CD3)2SO) d 6.57 (1 H, d, J=15.8 Hz, 2-H), 6.76 (1 H,
d, J=7.3 Hz, isoquinoline 4-H), 7.28 (1 H, d, J=7.3 Hz,
isoquinoline 3-H), 7.52 (1 H, t, J=7.7 Hz, isoquinoline
7-H), 8.10 (1 H, d, J=15.8 Hz, 3-H), 8.12 (1 H, d,
J=7.7 Hz) and 8.27 (1 H, d, J=7.7 Hz) (isoquinoline 6,
8-H2); MS (FAB) m/z 216.0616 (M+H) (12C12H10NO3
requires 216.0661), 215.0584 (M) (12C12H9NO3 requires
215.0582).
1
50 (2.5% by NMR). 49: H NMR ((CD3)2SO) d 1.70 (4
H, m, pentyl 2, 3-H4), 2.50 (2 H, m, pentyl 4-H2), 2.90 (2
H, m, pentyl 1-H2), 6.73 (1 H, d, J=7.7 Hz, isoquinoline
4-H), 7.23 (1 H, d, J=7.7 Hz, isoquinoline 3-H), 7.50 (2
H, m, isoquinoline 6, 7-H2), 8.30 (1 H, m, isoquinoline
5-(1E-3RS-3-(4R-2,2-Dimethyldihydro-1,3-dioxol-4-yl)-
3-hydroxyprop-1-enyl)isoquinolin-1-one (45) and 5-(3-
(4R-2,2-dimethyldihydro-1,3-dioxol-4-yl)-3-oxopropyl)iso-
quinolin-1-one (46). 5-Iodoisoquinolin-1-one 4224
(400 mg, 1.5 mmol) was boiled under re¯ux with 4R-2,2-
dimethyl-4-(1RS-1-hydroxyprop-2-enyl)dihydro-1,3-
dioxole 4452,53 (315 mg, 1.9 mmol), Pd(OAc)2 (32 mg,
140 mmol) and Et3N (370 mg, 3.7 mmol) in EtCN
(1.5 mL) for 2 h. The evaporation residue, in EtOAc,
was washed with dilute HCl (2 M) and with brine. Dry-
ing, evaporation and chromatography (EtOAcMe2CO:-
hexane, 2:1) gave 45 (76 mg, 18%) as an o-white solid:
mp 164±166 ꢀC; 1H NMR d 1.40 (3 H, s, Me), 1.50 (3 H,
s, Me), 2.17 (1 H, br, OH), 3.93 (0.5 H, dd, J=8.5,
5.5 Hz, dioxole 5-H, diastereoisomer A), 4.04 (1 H, m,
dioxole 5-H2, diastereoisomer B), 4.1 (0.5 H, m, dioxole
5-H, A), 4.20 (0.5 H, m, dioxole 4-H, A), 4.28 (0.5 H, m,
dioxole 4-H, B), 4.34 (0.5 H, m, propenyl 3-H, A), 4.56
(0.5 H, m, propenyl 3-H, B), 6.18 (1 H, m, propenyl 4-
H), 6.81 (0.5 H, d, J=7.3 Hz, isoquinoline 4-H, B), 6.82
(0.5 H, d, J=7.3 Hz, isoquinoline 4-H, A), 7.19 (1 H, d,
J=7.3 Hz, isoquinoline 3-H), 7.24 (1 H, m, propenyl 1-
H), 7.48 (1 H, t, J=7.8 Hz, isoquinoline 7-H), 7.78 (1 H,
d, J=7.8 Hz, isoquinoline 6-H), 8.37 (1 H, d, J=7.8 Hz,
isoquinoline 8-H), 10.6 (1 H, br, NH); MS (FAB) m/z
302.1373 (M+H) (12C17H20NO4 requires 302.1392).
Further elution gave 46 (176 mg, 42%) as an o-white
solid: mp 138±141 ꢀC; IR 3300, 3160, 1715, 1660,
1
8-H), 9.78 (1 H, br, CHO), 11.37 (1 H, br, NH). 50: H
NMR ((CD3)2SO) d 1.30 (5 H, m, Me + butyl 2-H2),
2.40 (2 H, t, J=7.7 Hz, butyl 2-H2), 3.40 (1 H, m, butyl
1-H), 6.83 (1 H, d, J=7.7 Hz, isoquinoline 4-H), 7.50 (1
H, m, isoquinoline 3,6,7-H3), 8.30 (1 H, m, isoquinoline
8-H), 9.74 (1 H, br, CHO), 11.37 (1 H, br, NH); MS
(FAB) m/z 230.1184 (M+H) (12C14H16NO2 requires
230.1181). Further elution gave a mixture of 47 (13% by
NMR) and 48 (11% by NMR). 47: 1H NMR
((CD3)2SO) d 1.60 (2 H, quintet, J=6.8 Hz, pentenyl 2-
H2), 2.30 (2 H, m, pentenyl 3-H2), 3.50 (2 H, m, pente-
nyl 1-H2), 6.3 (1 H, m, pentenyl 4-H), 6.75 (1 H, d,
J=7.5 Hz, isoquinoline 4-H), 6.93 (1 H, d, J=15.6 Hz,
pentenyl 5-H), 7.18 (1 H, d, J=7.5 Hz, isoquinoline 3-
H), 7.48 (1 H, m, isoquinoline 7-H), 7.80 (1 H, d,
J=7.5 Hz, isoquinoline 6-H), 8.10 (1 H, m, isoquinoline
1
8-H). 48: H NMR ((CD3)2SO) d 2.10 (2 H, m, butyl 3-
H2), 2.50 (2 H, m, butyl 2-H2), 3.50 (2 H, m, butyl 1-
H2), 5.5 (2 H, m, H2C=C), 6.62 (1 H, d, J=7.7 Hz,
isoquinoline 4-H), 7.18 (1 H, d, J=7.7 Hz, isoquinoline
3-H), 7.48 (2 H, m, isoquinoline 6,7-H2), 8.10 (1 H, m,
isoquinoline 8-H); MS (FAB) m/z 230.1178 (M+H)
(12C14H16NO2 requires 230.1181).
Acknowledgements
The authors thank Mr R. R. Hartell and Mr D. J.
Wood for the NMR spectra and Mr C. Cryer for the
mass spectra. The support of the EPSRC Mass Spec-
trometry Service Centre in providing some of the
high-resolution mass spectra is acknowledged. We are
1
1630 cm 1; H NMR d 1.38 (3 H, s, Me), 1.43 (3 H, s,
Me), 2.99 (1 H, t, J=7.6 Hz) and 3.00 (1 H, t,
J=7.6 Hz) and 3.20 (2 H, m) (propyl 1,2-H4), 3.96 (1 H,
dd, J=8.5, 5.5 Hz, dioxole 5-H), 4.19 (1 H, dd, J=8.5,