Dimethylplatinum(II) Diimine Complexes
Organometallics, Vol. 17, No. 18, 1998 3965
crystals (969 mg, 94%). 1H NMR (300 MHz, dichloromethane-
d2): δ 1.63 (s, 2J (195Pt-H) ) 87.8 Hz, 6 H, PtMe), 3.87 (s, 6 H,
OMe), 7.01 (“d”, 3J (HaHb) ) 8.9 Hz, 4 H, Ar Ha), 7.42 (“d”,
3J (HaHb) ) 8.9 Hz, 4 H, Ar Hb), 9.30 (s, 3J (195Pt-H) ) 28.7
Hz, 2 H, NCHCHN). 13C{1H} NMR (75 MHz, dichloromethane-
d2): δ -11.5 (1J (195Pt-C) ) 806 Hz, PtMe), 56.0 (OMe), 114.4
(Ar Cm), 124.9 (Ar Co), 143.6 (Ar Cipso), 160.4 (Ar Cp), 160.8
(NCHCHN). UV-vis (acetonitrile): λmax 394 (12.7), 564 (2.1),
595 (2.2). UV-vis (toluene): 411 (14.0), 605 (2.4), 649 (3.0).
Anal. Calcd for C18H22N2O2Pt: C, 43.81; H, 4.49; N, 5.68; Pt,
39.53. Found: C, 44.32; H, 4.70; N, 6.43; Pt, 39.64.
ambient temperature. The solvent was removed, and the solid
was washed with several portions of ether before it was
dissolved in a minimum amount of acetonitrile. Precipitation
by addition of toluene yielded the product as a red powder (222
mg, 90%). 1H NMR (300 MHz, dichloromethane-d2): δ 1.11
2
4
(s, J (195Pt-H) ) 76.5 Hz, 3 H, PtMe), 2.46 (s, J (195Pt-H) )
14.0 Hz, 3 H, PtNCMe), 3.87 and 3.91 (s, 3 H each, MeO, Me′O),
3
3
7.01 (“d”, J (HaHb) ) 9.0 Hz, 2 H, Ar Ha), 7.10 (“d”, J (HaHb)
) 9.0 Hz, 2 H, Ar Hb), 7.27 (“d”, J (HaHb) ) 9.0 Hz, 2 H, Ar′
3
Ha), 7.56 (“d”, 3J (HaHb) ) 9.0 Hz, 2 H, Ar′ Hb), 8.87 (s, 3J -
3
(
195Pt-H) ) 97.9 Hz, 1 H, NCHC′HN′), 8.89 (s, J (195Pt-H) )
33.6 Hz, 1 H, NCHC′HN′). 13C{1H} NMR (75 MHz, acetoni-
trile-d3): δ -10.7 (1J (195Pt-C) ) 675 Hz, PtMe), 56.4 and 56.5
(OMe and OMe′), 115.0 and 115.9 (Ar Cm and Ar′ Cm), 125.6
(3J (195Pt-C) ) 20.4 Hz, Ar′ Co), 125.9 (Ar Co), 140.9 and 141.4
(Ar Cipso and Ar′ Cipso), 161.5 and 163.0 (Ar Cp and Ar′ Cp),
160.7 (2J (195Pt-C) ) 56.8 Hz, NCHC′HN) and 172.6 (NCMeC-
′MeN) (for a complete assignment, see Table 4). UV-vis
(acetonitrile): λmax 322 (5.0), 432 (13.2). Anal. Calcd for
C19H22BF4N3O2Pt: C, 37.64; H, 3.66; N, 6.93. Found: C, 38.55;
H, 3.75; N, 6.65.
(TolNdCMeCMedNTol)P tMe2 (1c): From Pt2Me4(µ-SMe2)2
(500 mg, 0.870 mmol) and TolNdCMeCMedNTol (460 mg,
1.740 mmol) in toluene (100 mL); dark purple shimmering
microcrystals (716 mg, 84%). 1H NMR (200 MHz, dichlo-
2
romethane-d2): δ 0.92 (s, J (195Pt-H) ) 86.9 Hz, 6 H, PtMe),
1.43 (s, 6 H, NCMeCMeN), 2.43 (s, 6 H, ArMe), 6.89 (“d”,
3
3J (HaHb) ) 8.3 Hz, 4 H, Ar Ha), 7.29 (“d”, J (HaHb) ) 8.0 Hz,
4 H, Ar Hb). 13C{1H} NMR (75 MHz, dichloromethane-d2): δ
-13.5 (1J (195Pt-C) ) 803 Hz, PtMe), 21.1 (NCMeCMeN), 21.1
(ArMe), 122.0 (Ar Co), 129.5 (Ar Cm), 136.2 (Ar Cp), 145.6 (2J -
195Pt-C) ) 25.7 Hz, Ar Cipso), 171.2 (2J (195Pt-C) ) 16.7 Hz,
[(TolNdCMeCMedNTol)P tMe(NCMe)]+(BF4-) (2c(BF4-).
A solution of 1c (150 mg, 0.31 mmol) in acetonitrile (14 mL)
was cooled to -13 °C, whereupon a 54% solution of HBF4 in
ether (50 µL, 0.37 mmol) was added with a syringe. The
mixture was stirred for 1.5 h, while it was slowly warmed to
ambient temperature. Workup following the procedure for
2a +(BF4-) yielded the product as orange microcrystals (154
mg, 83%). 1H NMR (200 MHz, dichloromethane-d2): δ 0.62
(
NCMeCMeN). UV-vis (acetonitrile): λmax 372 (4.1), 510 sh
(2.0), 541 (2.2). UV-vis (toluene): 453 (3.8), 595 (0.4). Anal.
Calcd for C20H26N2Pt: C, 49.07; H, 5.35; N, 5.72; Pt, 39.85.
Found: C, 49.01; H, 5.29; N, 5.85; Pt, 40.03.
(An NdCMeCMeAn )P tMe2 (1d ): from Pt2Me4(µ-SMe2)2
(600 mg, 1.044 mmol) and AnNdCMeCMedNAn (619 mg,
2.089 mmol) in toluene (130 mL); dark purple shimmering
microcrystals (991 mg, 91%). 1H NMR (300 MHz, dichlo-
2
4
(s, J (195Pt-H) ) 75.1 Hz, 3 H, PtMe), 2.05 (s, J (195Pt-H) )
10.2 Hz, 3 H, NCMeC′MeN), 2.11 (s, J (195Pt-H) ) 13.6 Hz, 3
4
2
romethane-d2): δ 0.95 (s, J (195Pt-H) ) 86.6 Hz, 6 H, PtMe),
H, PtNCMe), 2.13 (s, 3 H, NCMeC′MeN), 2.42 and 2.44 (s, 3
1.45 (s, 6 H, NCMeCMeN), 3.86 (s, 6 H, OMe), 6.95 (“d”,
H each, ArMe and Ar′Me), 6.92 (“d”, J (HaHb) ) 8.3 Hz, 2 H,
3
3
3J (HaHb) ) 9.0 Hz, 4 H, Ar Ha), 7.01 (“d”, J (HaHb) ) 9.0 Hz,
Ar Ha), 7.08 (“d”, 3J (HaHb) ) 8.3 Hz, 2 H, Ar Hb), 7.33 (“d”,
4 H, Ar Hb). 13C{1H} NMR (75 MHz, dichloromethane-d2): δ
-13.5 (1J (195Pt-C) ) 801 Hz, PtMe), 21.1 (NCMeCMeN), 55.8
(OMe), 114.1 (Ar Cm), 123.4 (ArCo), 141.3 (2J (Pt-C) ) 26.0 Hz,
Ar Cipso), 158.2 (Ar Cp), 171.4 (2J (Pt-C) ) 18.2 Hz, NCMeC-
MeN). UV-vis (acetonitrile): λmax 369 (7.6), 510 sh (3.0), 543
(3.2). UV-vis (toluene): 378 (4.0), 550 (0.9), 597 (0.9). Anal.
Calcd for C20H26N2O2Pt: C, 46.06; H, 5.03; N, 5.37; Pt, 37.41.
Found: C, 46.58; H, 4.88; N, 5.76; Pt, 37.31.
3J (HaHb) ) 8.0 Hz, 2 H, Ar′ Ha) and 7.37 (“d”, J (HaHb) ) 8.1
3
Hz, 2 H, Ar′ Hb). 13C{1H} NMR (75 MHz, dichloromethane-
d2): δ -11.9 (PtMe), 3.5 (PtNCMe), 19.9 and 21.6 (NCMeC-
′MeN), 21.2 (ArMe and Ar′Me), 121.9 and 122.3 (Ar Co and Ar′
Co), 130.2 (Ar Cm and Ar′ Cm), 138.6 and 138.7 (Ar Cp and Ar′
Cp), 142.7 and 143.1 (Ar Cipso and Ar′ Cipso), 173.8 and 183.7
(NCMeC′MeN). UV-vis (acetonitrile): λmax 314 (4.8). Anal.
Calcd for C21H26BF4N3Pt: C, 41.87; H, 4.35; N, 6.98. Found:
C, 41.66; H, 4.27; N, 7.19.
[(TolNdCHCHdNTol)P tMe(NCMe)]+(BF 4-) (2a (BF 4-)).
A solution of 1a (100 mg, 0.217 mmol) in acetonitrile (7 mL)
was cooled to -13 °C, whereupon a 54% solution of HBF4 in
ether (31 µL, 0.23 mmol) was added with a syringe. The
mixture was stirred for 2 h, while it was slowly warmed to
ambient temperature. The solvent was removed, and the
residue was washed with several portions of ether. The solid
was dissolved in a minimum amount of dichloromethane. The
product was obtained as an orange powder (89 mg, 72%) by
the addition of pentane. 1H NMR (200 MHz, dichloromethane-
d2): δ 1.08 (s, 2J (195Pt-H) ) 76.6 Hz, 3 H, PtMe), 2.43 and
2.45 (s, 3 H each, ArMe, Ar′Me), 2.44 (s, 4J (195Pt-H) ) 13.9
[(An NdCMeCMedNAn )P tMe(NCMe)]+(BF4-) (2d(BF4-)).
A solution of 1d (100 mg, 0.19 mmol) in acetonitrile (10 mL)
was cooled to -13 °C, whereupon a 54% solution of HBF4 in
ether (26 µL, 0.19 mmol) was added with a syringe. The
mixture was stirred for 1 h, while it was slowly warmed to
ambient temperature. The product was obtained as orange
crystals after recrystallization from acetonitrile/toluene (107
mg, 88%). 1H NMR (200 MHz, dichloromethane-d2): δ 0.65
2
4
(s, J (195Pt-H) ) 75.1 Hz, 3 H, PtMe), 2.06 (s, J (195Pt-H) )
10.3 Hz, 3 H, NCMeC′MeN), 2.15 (s, 3 H, NCMeC′MeN), 2.17
4
(s, J (195Pt-H) ) 13.6 Hz, 3 H, PtNCMe), 3.86 and 3.87 (s, 3
3
Hz, 3 H, PtNCMe), 7.18 (“d”, J (HaHb) ) 8.3 Hz, 2 H, Ar Ha),
H each, OMe and OMe′), 6.97 (“d”, J (HaHb) ) 9.1 Hz, 2 H, Ar
Ha), 7.03, (“d”, J (HaHb) ) 9.1 Hz, 2 H, Ar Hb) 7.08 (“d”, J (HaHb)
) 9.1 Hz, 2 H, Ar′ Ha), 7.15 (“d”, J (HaHb) ) 9.1 Hz, 2 H, Ar′
Hb). 13C{1H} NMR (75 MHz, dichloromethane-d2): δ -11.7
(PtMe), 3.6 (PtNCMe), 20.0 and 21.7 (NCMeC′MeN), 55.9 and
56.1 (OMe and OMe′), 114.8 and 114.8 (Ar Cm and Ar′ Cm),
123.8 and 123.8 (ArCo and Ar′Co), 138.2 and 138.7 (Ar Cipso
and Ar′ Cipso), 159.4 and 159.8 (ArCp and Ar′Cp), 173.6 and
183.9 (NCMeC′MeN). UV-vis (acetonitrile): λmax 306 (4.4),
393 (5.1). Anal. Calcd for C21H26BF4N3O2Pt: C, 39.76; H, 4.13;
N, 6.62. Found: C, 40.55; H, 4.08; N, 7.32.
3
3
7.31 (“d”, J (HaHb) ) 8.4 Hz, 2 H, Ar Hb), 7.38 (“d”, J (HaHb)
) 8.9 Hz, 2 H, Ar′ Ha), 7.45 (“d”, J (HaHb) ) 8.8 Hz, 2 H, Ar′
3
Hb), 8.94 (s, J (195Pt-H) ) 99.8 Hz, 1 H, NCHC′HN′), 8.98 (s,
3
3J (195Pt-H) ) 35.6 Hz, 1 H, NCHC′HN′). 13C{1H} NMR (75
MHz, acetonitrile-d3): δ -10.8 (1J (195Pt-C) ) 674 Hz, PtMe),
21.1 and 21.3 (ArMe and Ar′Me), 123.8 (s, Ar Co), 123.8 (3J (195
-
Pt-C ) 19.0 Hz), Ar′ Co), 130.5 and 131.2 (Ar Cm and Ar′ Cm),
141.0 and 142.8 (Ar Cp and Ar′ Cp), 145.2 and 145.8 (Ar Cipso
and Ar′ Cipso), 162.5 (2J (195Pt-C) ) 57.0 Hz, NCHC′HN), 173.5
(NCHC′HN). UV-vis (acetonitrile): λmax 329 (6.9), 400 (9.9).
Anal. Calcd for C19H22BF4N3Pt: C, 39.74; H, 3.86; N, 7.32.
Found: C, 39.93; H, 3.86; N, 7.16.
[(An NdCHCHdNAn )P tMe(NCMe)]+(BF 4-) (2b(BF 4-)).
A solution of 1b (200 mg, 0.41 mmol) in acetonitrile (15 mL)
was cooled to -13 °C, after which a 54% solution of HBF4 in
ether (60 µL, 0.44 mmol) was added with a syringe. The
mixture was stirred for 2 h, while it was slowly warmed to
[(An NdCHCHdNAn )P tMe3(NCMe)]+(OTf-) (3b(OTf-)).
A solution of 1b (150 mg, 0.30 mmol) in acetonitrile (15 mL)
was cooled to -13 °C, whereupon methyl triflate (35 µL, 0.32
mmol) was added with a syringe. The mixture was stirred
for 4 h, during which it was slowly warmed to ambient
temperature. The solution was filtered, and the solvent was