Notes and References
† E-mail: tgtobm@chem.tue.nl
1 J. M. J. Frechet, Science, 1994, 263, 1710.
2 K. L. Wooley, J. M. J. Fre¨chet and C. J. Hawker, Polymer, 1994, 35,
4489.
3 C. J. Hawker, P. Farrington, M. Mackay, J. M. J. Fre¨chet and K. L.
Wooley, J. Am. Chem. Soc., 1995, 117, 6123.
4 J. F. G. A. Jansen, E. M. de Brabander van den Berg and E. W. Meijer,
Science, 266, 1226.
5 J. F. G. A. Jansen, E. W. Meijer and E. M. de Brabander van den Berg,
J. Am. Chem. Soc., 1995, 117, 4417.
6 Y. H. Kim and O. W. Webster, J. Am. Chem. Soc., 1990, 112, 4592.
7 Y. H. Kim and O. W. Webster, Macromolecules, 1992, 25, 5561.
8 C. J. Hawker, R. Lee and J. M. J. Fre¨chet, J. Am. Chem. Soc., 1991, 113,
4583.
9 S. R. Turner, B. I. Voit and T. M. Mourey, Macromolecules, 1993, 26,
4617.
n
10 W. J. Feast and N. M. J. Stainton, J. Mater. Chem., 1995, 5, 405.
11 A. Kumar and S. Ramakrishnan, Macromolecules, 1996, 29, 2524.
12 E. Malmstorm, M. Johansson and A. Hult, Macromolecules, 1996, 29,
1222.
13 V. Percec, P. Chu, G. Unger and J. Zhou, J. Am. Chem. Soc., 1995, 117,
1441.
7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2
ppm
Fig. 1 300 MHz 1H NMR spectra of the polymer and the model compounds
in (CD3)2SO–D2O
14 T. M. Miller, T. X. Neenan, E. W. Kwock and S. M. Stein, J. Am. Chem.
Soc., 1993, 115, 356.
15 A. Kumar and S. Ramakrishnan, J. Chem. Soc., Chem. Commun., 1993,
1453.
16 A. Kumar and S. Ramakrishnan, J. Polym. Sci., Polym. Chem. Ed.,
1996, 34, 839.
17 R. Spindler and J. M. J. Frechet, Macromolecules, 1993, 26, 4809.
18 M. Suzuki, A. Li and T. Saegusa, Macromolecules, 1992, 25, 7071.
19 Y. H. Kim, J. Am. Chem. Soc., 1992, 114, 4947.
20 L. J. Mathias and T. W. Carothers, J. Am. Chem. Soc., 1991, 1134,
4043.
1
urea linkages. The H NMR spectrum of the hyperbranched
polyurea (Fig. 1) was analyzed based upon the various possible
subunits (A–C) that may be present. Various peaks in the NMR
spectrum of the polymer (Fig. 1) were assigned upon the NMR
spectrum of three model compounds that resemble subunits
A–C. The degree of branching calculated based on the 1H NMR
H2N
HNOCHN
21 J. M. J. Frechet, M. Henmi, I. Gitsov, S. Aoshima, M. R. Leduc and
R. B. Grubbs, Science, 1995, 269, 1080.
22 S. G. Gaynor, S. Edelman and K. Matyjaszewski, Macromolecules,
1996, 29, 1079.
23 C. J. Hawker, J. M. J. Fre¨chet, R. B. Grubbs and J. Dao, J. Am. Chem.
Soc., 1995, 117, 10763.
24 K. Matyjaszewski, S. G. Gaynor, A. Kulfan and M. Podwika,
Macromolecules, 1997, 30, 5192.
NHCONH
HNOCHN
HNOCHN
NHCONH
H2N
H2N
A
B
NHCONH
C
25 G. R. Newkome, X. Lin and C. D. Weis, Tetrahedron: Asymmetry,
1991, 2, 957.
26 K. E. Uhrich and J. M. J. Frechet, J. Chem. Soc., Perkin Trans. 1, 1992,
1623.
27 R. G. Dekewalter, J. F. Kolc and W. J. Lukasavage, US Pat.
4410688/1983.
spectrum was found to be 0.55. This suggests that the growth
process is statistical in nature in agreement with other
systems.36 The molecular mass of the samples was determined
by GPC using NMP as solvent and polystyrene as standard. Mw
was found to be 19 500 with a polydispersity of 1.56.
The wholly aromatic linear polyureas are generally difficult
to process because of their limited solubility and high melt
temperatures.32,37 One approach to increase solubility in
organic solvents is the introduction of N-alkyl or N-aryl
substituents along the polymer backbone. Here we have shown
that the wholly aromatic hyperbranched polyureas are com-
pletely soluble. A closer look at the Boc-protected carbonyl
azide 3 reveals that its a novel AB2 type building block where
both A and B groups are protected and can be generated when
needed. These types of structures are ideal candidates for the
stepwise synthesis of the dendrimers. Currently, work is in
progress to generate the corresponding perfect polyurea den-
drimers.
28 C. Rao and J. P. Tam, J. Am. Chem. Soc., 1994, 116, 6975.
29 J. Shao and J. P. Tam, J. Am. Chem. Soc., 1995, 117, 3893.
30 P. J. Dandliker, F. Diederich, M. Gross, C. B. Knobler, A. Louati and
E. M. Sanford, Angew. Chem., Int. Ed. Engl., 1994, 33, 1739.
31 P. J. Dandliker, F. Diederich, J.-P. Gisselbrecht, A. Louati and M.
Gross, Angew. Chem., Int. Ed. Engl., 1995, 34, 2725.
32 M. Katz, US Pat. 2888438/1959; Chem. Abstr., 1959, 53, 17582b.
33 A. J. Ryan and J. L. Standord, in Comprehensive Polymer Science, ed.
G. C. Eastmond, A. Ledwith, S. Russo and P. Sigwalt, Pergamon,
Oxford, 1989, vol. 5, p. 427.
34 E. Ponnusamy, V. Fotadar, A. Spisni and D. Fiat, Synthesis, 1986, 48.
35 N. D. Ghatge and J. Y.Jadhav, J. Polym. Sci., Polym. Chem. Ed., 1983,
21, 1941.
36 For a critical review see: D. Ho¨lter, A. Burgath and H. Frey, Acta
Polym., 1997, 48, 30.
37 Y. Oishi, M.-A. Kakimoto and Y. Imai, J. Polym. Sci., Polym. Chem.
Ed., 1987, 25, 2185.
This work was supported by the Netherlands Foundation for
Chemical Research (SON).
Received in Liverpool, UK, 13th May 1998; 8/03676D
1630
Chem. Commun., 1998