Organic Letters
Letter
Notes
efficient intramolecular SET process enabled by its balanced
conformational rigidity and flexibility with the key peptide
linker. A certain rigidity of the Pro residue could bring the
enamine moiety and the excited flavin ring system close to
make their SET efficient (Scheme 4, left),15 while a certain
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by JSPS KAKENHI (Grant-in-Aid
for Scientific Research (C), No. 19K05457) and the Research
Clusters program of Tokushima University (No. 1802001).
Scheme 4. A Plausible Explanation for the Catalytic
Performance of 3c
REFERENCES
■
(1) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77−80.
(2) (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.
2013, 113, 5322−5363. (b) Nicewicz, D. A.; Nguyen, T. M. ACS
Catal. 2014, 4, 355−360. (c) Romero, N. A.; Nicewicz, D. A. Chem.
Rev. 2016, 116, 10075−10166.
(3) Koike, T.; Akita, M. Chem. Lett. 2009, 38, 166−167.
(4) Neumann, M.; Fuldner, S.; Konig, B.; Zeitler, K. Angew. Chem.,
̈
̈
Int. Ed. 2011, 50, 951−954.
(5) Nacsa, E. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140,
3322−3330.
(6) (a) Yoon, H.-S.; Ho, X.-H.; Jang, J.; Lee, H.-J.; Kim, S.-J.; Jang,
flexibility of the Ahx residue could entropically favor an open
conformation within which the resulting free radical cation and
anion are liberated to rapidly react with TEMPO and probably
the remaining oxygen, respectively, accordingly suppressing
back electron transfer (BET) (Scheme 4, right). The undesired
decomposition of 3c into 4 (Figure 2), probably triggered by
the β-hydrogen abstraction with N1 nitrogen of the flavin ring
system in 3c through a six-membered transition state (see
concentration of enamine sufficiently higher than that of the
excited flavin ring under the slow photon irradiation, which
brought about the unprecedented quantum yield of reaction.
In summary, we have demonstrated that simple flavin
molecules such as RFTA and MLF can be used as a
photoredox catalyst for α-oxyamination of aldehydes with
TEMPO under blue LED light irradiation, which are chain-
process-free (Φ < 1) and much more efficient compared to
Ru(bpy)3(PF6)2 previously reported under identical condi-
tions. Furthermore, we have introduced the peptide-bridged
flavin−amine hybrid 3c, Bn-Ahx-Pro-NH-10-FlEt, which can
promote the same reaction as a dual functional catalyst with an
extremely high quantum yield of reaction (Φ = 0.80) under
suitable conditions. This study will provide a guide for the
design of new photoredox/enamine dual catalysis that allows
for efficient use of photons in a useful molecular trans-
formation.
́
H.-Y. Org. Lett. 2012, 14, 3272−3275. (b) Ciszewski, Ł. W.; Smolen,
S.; Gryko, D. ARKIVOC 2017, ii, 251−259.
(7) Wasielewski, M. R. Chem. Rev. 1992, 92, 435−461.
́
́
(8) Rigotti, T.; Casado-Sanchez, A.; Cabrera, S.; Perez-Ruiz, R.;
́
̃
a O’Shea, V. A.; Aleman, J. ACS Catal. 2018, 8,
Liras, M.; de la Pen
5928−5940.
(9) For selected examples, see: (a) Svoboda, J.; Schmaderer, H.;
̈
̈
Konig, B. Chem. - Eur. J. 2008, 14, 1854−1865. (b) Lechner, R.;
Konig, B. Synthesis 2010, 2010, 1712−1718. (c) Muhldorf, B.; Wolf,
̈
R. Angew. Chem., Int. Ed. 2016, 55, 427−430. (d) Hering, T.;
Muhldorf, B.; Wolf, R.; Konig, B. Angew. Chem., Int. Ed. 2016, 55,
̈
̈
5342−5345. (e) Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc.
2016, 138, 1040−1045. (f) Hartman, T.; Cibulka, R. Org. Lett. 2016,
18, 3710−3713. (g) Muhldorf, B.; Wolf, R. ChemCatChem 2017, 9,
̈
̈
́
920−923. (h) Marz, M.; Kohout, M.; Nevesely, T.; Chudoba, J.;
́
́
Prukata, D.; Nizinski, S.; Sikorski, M.; Burdzinski, G.; Cibulka, R. Org.
Biomol. Chem. 2018, 16, 6809−6817. (i) Morack, T.; Metternich, J.
B.; Gilmour, R. Org. Lett. 2018, 20, 1316−1319. (j) Zelenka, J.;
́
́
́
́
Svobodova, E.; Tarabek, J.; Hoskovcova, I.; Boguschova, V.; Bailly, S.;
́
Sikorski, M.; Roithova, J.; Cibulka, R. Org. Lett. 2019, 21, 114−119.
(k) Ramirez, N. P.; Konig, B.; Gonzalez-Gomez, J. C. Org. Lett. 2019,
̈
21, 1368−1373.
(10) For selected examples, see: (a) Imada, Y.; Iida, H.; Ono, S.;
Murahashi, S.-I. J. Am. Chem. Soc. 2003, 125, 2868−2869. (b) Imada,
Y.; Iida, H.; Murahashi, S.-I.; Naota, T. Angew. Chem., Int. Ed. 2005,
44, 1704−1706. (c) Imada, Y.; Iida, H.; Naota, T. J. Am. Chem. Soc.
2005, 127, 14544−14545. (d) Imada, Y.; Kitagawa, T.; Ohno, T.;
Iida, H.; Naota, T. Org. Lett. 2010, 12, 32−35. (e) Imada, Y.; Iida, H.;
Kitagawa, T.; Naota, T. Chem. - Eur. J. 2011, 17, 5908−5920.
(f) Arakawa, Y.; Oonishi, T.; Kohda, T.; Minagawa, K.; Imada, Y.
ChemSusChem 2016, 9, 2769−2773. (g) Arakawa, Y.; Yamanomoto,
K.; Kita, H.; Minagawa, K.; Tanaka, M.; Haraguchi, N.; Itsuno, S.;
Imada, Y. Chem. Sci. 2017, 8, 5468−5475. (h) Arakawa, Y.; Kawachi,
R.; Tezuka, Y.; Minagawa, K.; Imada, Y. J. Polym. Sci., Part A: Polym.
Chem. 2017, 55, 1706−1713. (i) Yamanomoto, K.; Kita, H.; Arakawa,
Y.; Minagawa, K.; Imada, Y. Chimia 2018, 72, 866−869. (j) Arakawa,
Y.; Minagawa, K.; Imada, Y. Polym. J. 2018, 50, 941−949. (k) Oonishi,
T.; Kawahara, T.; Arakawa, Y.; Minagawa, K.; Imada, Y. Eur. J. Org.
Chem. 2019, 2019, 1791−1795.
(11) Saritha, A.; Raju, B.; Ramachary, M.; Raghavaiah, P.; Hussain,
K. A. Phys. B 2012, 407, 4208−4213.
(12) Fukuzumi, S.; Yasui, K.; Suenobu, T.; Ohkubo, K.; Fujitsuka,
M.; Ito, O. J. Phys. Chem. A 2001, 105, 10501−10510.
(13) TFA salts of 3 were used not only to promote enamine
formation but also to minimize possible intramolecular photoinduced
electron transfer between the flavin and secondary amine moiety in
the catalyst: Porcal, G.; Bertolotti, S. G.; Previtali, C. M.; Encinas, M.
V. Phys. Chem. Chem. Phys. 2003, 5, 4123−4128.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimantal protocols and selected NMR spectra
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
D
Org. Lett. XXXX, XXX, XXX−XXX