10.1002/chem.201900587
Chemistry - A European Journal
COMMUNICATION
synthesis of five-membered pyrrolidines, the cobalt(II)porphyrin-
catalyzed construction of piperidines is accompanied by formation
of (generally small amounts of) olefinic side products. The relative
amount of alkene was found to be dependent on the substitution
of the substrate. DFT calculations indicate a mechanism involving
1,6-HAT from the carbene radical carbon to the benzylic position
of intermediate C, to form benzyl radical intermediate D. The latter
can undergo radical rebound ring-closure to form piperidines.
Competitive 1,5-HAT from the β-position to the benzylic radical
carbon explains the formation of linear alkenes as side products.
DFT and 1H-NMR monitoring experiments suggest that axial
ligand coordination influences the product ratio.
Acknowledgements
The work described in this paper was financially supported by the
Netherlands Organization for Scientific Research (NWO TOP-
Grant 716.015.001), the University of Amsterdam (Research
Priority Area Sustainable Chemistry) and the National Science
Foundation (Graduate Research Fellowship Program, NSF-
NWO-GROW-project, no. DGE-1419118). We thank Prof. dr.
Joost N.H. Reek for a valuable suggestion, Ed Zuidinga for HRMS
measurements and Dylan E. Parsons (University of Rochester)
for helpful scientific discussions.
Conflict of interest
The authors declare no conflict of interest.
Keywords: Homogeneous catalysis • Radicals • Nitrogen
heterocycles • C-H activation • C-C coupling
[1]
[2]
(a) A.L. Mndzhoian, in Synthesis of Heterocyclic Compounds, Springer,
1959. (b) C.W. Bird, in Comprehensive Heterocyclic Chemistry II,
Pergamon: Oxford, 1996.
(a) E. Vitaku, D.T. Smith, J.T. Njardarson, J. Med. Chem. 2014, 57,
10257. (b) R.D. Tylor, M. MacCoss, A.D.G. Lawson, J. Med. Chem. 2014,
57, 5845.
[14] S. Roy, S.K. Das, B. Chattopadhyay, Angew. Chem. Int. Ed. 2018, 57,
2238.
[15] Y. Wang, X. Wen, X. Cui, X.P. Zhang, J. Am. Chem. Soc. 2018, 140,
4792.
[16] D. Solé, A. Amenta, M.-L. Bennasar, I. Fernández, Chem. Commun.,
2019, 55, 1160.
[3]
[4]
I. Nakamura, Y. Tamamoto, Chem. Rev. 2004, 104, 2127.
(a) P. Chirik, R. Morris (Ed.) Earth Abundant Metals in Homogeneous
Catalysis (special issue), Acc. Chem. Res. 2015. (b) R.J.M. Klein
Gebbink & M.-E. Moret (Ed.) Non-Noble Metal Catalysis: Molecular
Approaches and Reactions, Wiley, 2019, ISBN: 978-3-527-34061-3.
Selected examples: (a) A. Gansäuer, M. Behlendorf, D. von Laufenberg,
A. Fleckhaus, C. Kube, D.V. Sadasivam, R.A. Flowers II, Angew. Chem.
Int. Ed. 2012, 51, 4739. (b) A. Gansäuer, S. Hildebrandt, A. Michelmann,
T. Dahmen, D. von Laufenberg, C. Kube, G.D. Fianu, R.A. Flowers II,
Angew. Chem. Int. Ed. 2015, 54, 7003. (c) W. Hao, X. Wu, J.Z. Sun, J.C.
Siu, S.N. MacMillan, S. Lin, J. Am. Chem. Soc., 2017, 139, 12141. (d)
P.F. Kuijpers, M.J. Tiekink, W.B. Breukelaar, D.L.J. Broere, N.P. van
Leest, J.I. van der Vlugt, J.N.H. Reek, B. de Bruin, Chem. Eur. J. 2017,
23, 7945. (e) H. Jiang, K. Lang, H. Lu, L. Wojtas, X.P. Zhang, J. Am.
Chem. Soc., 2017, 139, 9164. (f) V. Lyaskovskyy, A.I.O. Suarez, H. Lu,
H. Jiang, X.P. Zhang, B. de Bruin, J. Am. Chem. Soc., 2011, 133, 12264.
(g) W.I. Dzik, X. Xu, X.P. Zhang, J.N.H. Reek, B. de Bruin, J. Am. Chem.
Soc., 2010, 132, 10891. (h) G. Manca, C. Mealli, D.M. Carminati, D.
Intrieri, E. Gallo, Eur. J. Inorg. Chem. 2015, 4885.
(a) L. Huang, Y. Chen, G.Y. Gao, X. P. Zhang, J. Org. Chem. 2003, 68,
8179. (b) S. Zhu, J.V. Ruppel, H. Lu, L. Wojtas, X.P. Zhang, J. Am. Chem.
Soc. 2008, 130, 5042. (c) D. Intrieri, A. Caselli, E. Gallo, Eur. J. Inorg.
Chem. 2011, 5071. (d) A. Chirila, B.G. Das, N.D. Paul, B. de Bruin,
ChemCatChem 2017, 9, 1413. (e) M. Goswami, B. de Bruin, W.I. Dzik,
Chem. Commun. 2017, 53, 4382.
(a) N.D. Paul, S. Mandal, M. Otte, X. Cui, X. P. Zhang, B de Bruin, J. Am.
Chem. Soc. 2014, 136, 1090. (b) N. Mujumdar, N. D. Paul, S. Mandal, B.
de Bruin, W.D. Wulff, ACS Catal. 2015, 5, 2329.
[17] A.R. Reddy, C. Zhou, Z. Guo, J. Wei, C. Che Angew. Chem. Int. Ed. 2014,
53, 14175.
[18] Y. Wang, X.P. Zhang, “[Co(3,5-Di-t-Bu-ChenPhyrin)]” e-EROS, John
Wiley & Sons, 2018.
[19] (a) M.P. Doyle, M.A. McKervey, T. Ye, Modern Catalytic Methods for
Organic Synthesis with Diazo Compounds, Wiley-Interscience, New York,
1998. (b) G. Bertrand, Carbene Chemistry, Fontis Media, Lausanne,
Switzerland, 2002.
[20] (a) H. Lu, W. I. Dzik, X. Xu, L. Wojtas, B. de Bruin and X. P. Zhang, J.
Am. Chem. Soc., 2011, 133, 8518. (b) W. I. Dzik, X. P. Zhang and B. de
Bruin, Inorg. Chem., 2011, 50, 9896. (c) W. I. Dzik, J. N. H. Reek and B.
de Bruin, Chem.–Eur. J, 2008, 14, 7594. (d) V. Lyaskovskyy and B. de
Bruin, ACS Catal., 2012, 2, 270.
[5]
[21] W.I. Dzik, X. Xu, X.P. Zhang, J.N H. Reek, B. de Bruin J. Am. Chem. Soc.
2010, 132, 10891.
[22] Involvement of a bis-carbene species was considered unlikely, based on
previously published calculations. See reference [21]
[23] Under catalytic conditions the reaction medium changes, and various
different donors could be coordinated to cobalt, not necessarily the same
in the beginning and end of the reaction: e.g. p-TsNHNH2, the oxygen
atoms of the base, the terminal nitrogen atom of the N-tosylhydrazone,
the internal nitrogen atom of the deprotonated N-tosylhydrazone and the
terminal nitrogen atom of the diazo compound could all act as axial
ligands.
[24] Only the relative energy barriers were significantly affected by these
nitrogen-donor ligands.The absolute energy barriers remained similar.
[25] Effects of axial ligands coordinated trans with respect to the substrate
have been extensively described before for metalloporphyrins. See e.g.
(a) Y. Chen, X.P. Zhang Synthesis 2006, 10, 1697. (b) D. Balcells, C.
Raynaud, R.H. Crabtree, O. Eisenstein Inorg. Chem., 2008, 47, 10090.
(c) Y. Kang, H. Chen, Y. J. Jeong, W. Lai, E. H. Bae, S. Shaik and W.
Nam Chem. Eur. J. 2009, 15, 10039. (d) S.P. de Visser, R. Latifi, L.
Tahsini, W. Nam Chem – Asian J. 2011, 6, 493.
[6]
[7]
[8]
[9]
X. Cui, X. Xu, L. Wojtas, M. M. Kim, X.P. Zhang, J. Am. Chem. Soc. 2012,
134, 19981.
B.G. Das, A. Chirila, M. Tromp, J.N.H. Reek, B. de Bruin, J. Am. Chem.
Soc. 2016, 138, 8968.
[10] A.S. Karns, M. Goswami, B. de Bruin, Chem. Eur. J. 2018, 24, 5253. For
the synthesis of enantioselective indolines, see: X. Wen, Y. Wang, X.P.
Zhang Chem. Sci. 2018, 9, 5082.
[11] N.D. Paul, A. Chirila, H. Lu, X.P. Zhang, B. de Bruin, Chem. Eur. J. 2013,
19, 12953.
[26] Note that these DFT calculations were performed in the gas phase and
were simplified in several ways. Furthermore, the product ratio is
calculated based on very small energy differences between the transition
states of the k1 and k2 pathways, close to the accuracy of the calculations.
The effects of axial ligand coordination on the computed k1/k2 ratios
should therefore not be over-interpreted.
[12] C. te Grotenhuis, B.G. Das, P.F. Kuijpers, W. Hageman, M. Trouwborst,
B. de Bruin, Chem. Sci. 2017, 8, 8221.
[13] C. te Grotenhuis, N. Heuvel, J.I. van der Vlugt, B. de Bruin, Angew. Chem.
Int. Ed. 2018, 57, 140.
This article is protected by copyright. All rights reserved.