C O M M U N I C A T I O N S
Table 1. Effect of Aromatic Substituent (Ar) of 3 and Scope of the
Acknowledgment. This paper is dedicated to the memory of
Professor Yoshihiko Ito. We gratefully acknowledge Dr. Jun-ichi
Ito (Nagoya Univ.) for his kind support of the X-ray crystallographic
analysis. This work was partially supported by a Grant-in-Aid for
Scientific Research on Priority Areas "Advanced Molecular Trans-
formation of Carbon Resources" from the Ministry of Education,
Culture, Sports, Science and Technology, Japan and Nagase Science
and Technology Foundation.
Nitroalkanesa
entry
(M,S)-3
4 (R1)
yieldb (%)
drc (anti:syn)
eed (%)
1
2
3
4
5
6
7e
3a
3b
3c
3d
3d
3d
3d
H (4a)
4a
86
36
84
90
93
78
90
89
45
88
94
97
96
97
Supporting Information Available: Representative experimental
procedures, physical characterization data of (M,S)-3a-d including the
X-ray analysis, and the details of the low-temperature NMR study;
crystallographic data for (M,S)-3a (CIF). This material is available free
4a
4a
Me (4b)
Et (4c)
4b
>19:1
13:1
>19:1
a See Supporting Information for details. b Isolated yield. c Determined
by 1H NMR analysis of crude reaction mixtures. d Determined by chiral
HPLC analysis. Enantiomeric excess of anti isomer (entries 5-7). e Reaction
was performed for 48 h with 1 mol % of (M,S)-3d/KOtBu.
References
(1) (a) Kosolapoff, G. M. In Organophosphorus Compounds, John Wiley &
Sons: New York, 1950. (b) A Guide to Organophosphorus Chemistry;
Quin, L. D., Ed.; John Wiley & Sons: New York, 2000.
Table 2. Substrate Scope of Chiral Tetraaminophosphonium Salt
(M,S)-3d-Mediated Asymmetric Direct Henry Reactiona
(2) Wittig, G.; Geissler, G. Liebigs Ann. Chem. 1953, 580, 44.
(3) Phase-transfer catalyst: (a) Handbook of Phase Transfer Catalysis, Sasson,
Y., Neumann, R., Eds.; Blackie Academic & Professional: London, 1997.
(b) Manabe, K. Tetrahedron 1998, 54, 14465. Organic fluoride-ion
source: (c) Bohsako, A.; Asakura, C.; Shioiri, T. Synlett 1995, 1033. Lewis
acidic promoter: (d) Mukaiyama, T.; Matsui, S.; Kashiwagi, K. Chem.
Lett. 1989, 993. (e) Mukaiyama, T.; Kashiwagi, K.; Matsui, S. Chem.
Lett. 1989, 1397. (f) McNulty, J. In Multiphase Homogeneous Catalysis;
Cornils, B., Herrmann, W. A., Horvath, I. T., Leitner, W., Mecking, S.,
Olivier-Bourbigou, H., Vogt, D., Eds.; Wiley-VCH: New York, 2005;
Vol. 2, Chapter 5.2.2.7, p 542-546. (g) Terada, M.; Kouchi, M.
Tetrahedron 2006, 62, 401.
entry
R2
time (h)
yieldb (%)
drc (anti:syn)
eed (%)
1
2
3
4
5
6
7
8
9
o-F-C6H4
p-F-C6H4
p-Cl-C6H4
p-Me-C6H4
1-naphthyl
2-furyl
5
9
94
91
95
90
84
96
74
76
77
>19:1
>19:1
>19:1
>19:1
>19:1
>19:1
>19:1
4:1
96
97
97
97
96
97
99
93
94
9
(4) EnantioselectiVe Organocatalysis: Reactions and Experimental Proce-
24
8
6
21
24
24
dures, Dalko, P. I., Ed.; Wiley & Sons: New York, 2007.
(5) (a) Beil, W.; Hoeppener, A.; Wolf, H. J.; Beil, H. C. NL-6407501-
19650111. (b) Shomova, E. A.; Rudavskii, V. P.; Derkach, G. I.; SU-
195785-19670504. (c) Kostina, V. G.; Rutkovskii, E. K.; Musich, E. G.;
Feshchenko, N. G.; Petrenco, V. S. Fiziol. Akt. VeshchestVa 1989, 21,
60.
(E)-PhCHdCH
Ph(CH2)2
Me(CH2)7
4:1
(6) Previous studies on (RNH)4PX-type tetraaminophosphonium salts: (a)
Cameron, T. B.; Hanson, H. N.; de la Fuente, G. F.; Huheey, J. E.
Phosphorus, Sulfur, Silicon 1993, 78, 37. (b) Schwesinger, R.; Willaredt,
J.; Schlemper, H.; Keller, M.; Schmitt, D.; Fritz, H. Chem. Ber. 1994,
127, 2435. (c) Raithby, P. R.; Russell, C. A.; Steiner, A.; Wright, D. S.
Angew. Chem., Int. Ed. Engl. 1997, 36, 649. (d) Bickley, J. F.; Copsey,
M. C.; Jeffery, J. C.; Leedham, A. P.; Russell, C. A.; Stalke, D.; Steiner,
A.; Stey, T.; Zacchini, S. Dalton Trans. 2004, 989.
(7) Basicity of iminophosphoranes: (a) Kaljurand, I.; Ku¨tt, A.; Soova¨li, L.;
Rodima, T.; Ma¨emets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2005,
70, 1019. (b) Kovacˇevic´, B.; Maksic´, Z. B. Chem. Commun. 2006, 1524.
(8) Synthetic application of a phosphazene as a base catalyst: (a) Bensa, D.;
Constantieux, T.; Rodriguez, J. Synthesis 2004, 923. (b) Imahori, T.; Hori,
C.; Kondo, Y. AdV. Synth. Catal. 2004, 346, 1090.
(9) Chiral variants: (a) Brunel, J. M.; Legrand, O.; Reymond, S.; Buono, G.
J. Am. Chem. Soc. 1999, 121, 5807. (b) Liu, X.; Ilankumaran, P.; Guzei,
I. A.; Verkade, J. G. J. Org. Chem. 2000, 65, 701. (c) Ilankumaran, P.;
Zhang, G.; Verkade, J. G. Heteroatom Chem. 2000, 11, 251. (d) Sauthier,
M.; Fornie´s-Ca´mer, J.; Toupet, L.; Re´au, R. Organometallics 2000, 19,
553. (e) Ko¨hn, U.; Schulz, M.; Schramm, A.; Gu¨nther, W.; Go¨rls, H.;
Schenk, S.; Anders, E. Eur. J. Org. Chem. 2006, 4128.
(10) (a) Wey, S. J.; O’Connor, K. J.; Burrows, C. J. Tetrahedron Lett. 1993,
34, 1905. (b) Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori,
R. J. Am. Chem. Soc. 1995, 117, 2675.
a See Supporting Information for details. b Isolated yield. c Determined
by 1H NMR analysis of crude reaction mixtures. d Enantiomeric excess of
anti isomer that was determined by chiral HPLC analysis.
reaction proceeded smoothly even at -78 °C to furnish the
corresponding nitro alcohol 5 (R1 ) H) in 86% yield with 89% ee
(entry 1, Table 1). Here, we found that the choice of the aromatic
substituent (Ar) on the diazaphosphacycle of 3 had a significant
effect on the catalyst efficiency (entries 1-4). While the use of
(M,S)-3b having m-xylyl groups caused a substantial decrease in
the reactivity and selectivity (entry 2), the p-tolyl substitution [(M,S)-
3c] scarcely affected the performance of the catalyst (entry 3).
Eventually, introduction of an electron-deficient p-trifluorometh-
ylphenyl functionality [(M,S)-3d] led to the formation of 5 (R1 )
H) in 90% yield with 94% ee (entry 4). This system was applicable
to other nitroalkanes, in which a high level of diastereo- and
enantioselectivities was attained (entries 5-6). It should be added
that the catalyst loading could be reduced to 1 mol % without any
detrimental effect on the selectivity albeit a longer reaction time
was required (entry 7).
Further investigation of the ability of (M,S)-3d to control the
relative and absolute configurations was conducted with nitroethane
(4b) as a representative nucleophilic component and various
aldehydes, and these results are summarized in Table 2. A virtually
complete stereochemical control was achieved with a series of
aromatic aldehydes including fused and heteroaromatic ones (entries
1-6). Notably, R,â-unsaturated and aliphatic aldehydes also
appeared to be good candidates (entries 7-9), which clearly
demonstrated the broad generality of this asymmetric direct Henry
protocol.
(11) Although a minor diastereomer, (P,S)-3a, has not been isolated in its pure
form, a preliminary experiment indicated that the (M,S)-isomer is more
effective in this reaction. Relative stereochemistries of 3b-d were
determined by the chemical shifts of 1H NMR spectra by analogy.
(12) Steiner, T. Angew. Chem., Int. Ed. 2002, 41, 48.
(13) Recent reviews on the asymmetric Henry reaction: (a) Boruwa, J.; Gogoi,
N.; Saikia, P. P.; Barua, N. C. Tetrahedron: Asymmetry 2006, 17, 3315.
(b) Palomo, C.; Oiarbide, M.; Laso, A. Eur. J. Org. Chem. 2007, 2561.
(14) (a) Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem.
Soc. 1992, 114, 4418. (b) Trost, B. M.; Yeh, V. S. C. Angew. Chem., Int.
Ed. 2002, 41, 861. (c) Evans, D. A.; Seidel, D.; Rueping, M.; Lam, H.
W.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2003, 125, 12692.
(d) Li, H.; Wang, B.; Deng, L. J. Am. Chem. Soc. 2006, 128, 732. (e)
Marcelli, T.; van der Haas, R. N. S.; van Maarseveen, J. H.; Hiemstra, H.
Angew. Chem., Int. Ed. 2006, 45, 929. (f) Sohtome, Y.; Hashimoto, Y.;
Nagasawa, K. Eur. J. Org. Chem. 2006, 2894. (g) Xiong, Y.; Wang, X.;
Huang, X.; Wen, Y.; Feng, X. Chem. Eur. J. 2007, 13, 829. (h) Bandini,
M.; Piccinelli, F.; Tommasi, S.; Umani-Ronchi, A.; Ventrici, C. Chem.
Commun. 2007, 616. (i) Ma, K.; You, J. Chem. Eur. J. 2007, 13, 1863
and references therein.
In conclusion, we have designed a chiral tetraaminophosphonium
salt 3 possessing the P-spirocyclic structure, and its potential as an
organic molecular catalyst has been demonstrated in the application
to the asymmetric direct Henry reaction. We believe that the present
study offers a new axis of chiral onium salt catalyses.
(15) See Supporting Information for details of the NMR experiment.
JA075152+
9
J. AM. CHEM. SOC. VOL. 129, NO. 41, 2007 12393